Artificial intelligence in predicting the bankruptcy of non-financial corporations




engineering industry, automotive industry, bankruptcy prediction, Logistic regression, artificial intelligence, neural network


Research background: In a modern economy, full of complexities, ensuring a business' financial stability, and increasing its financial performance and competitiveness, has become especially difficult. Then, monitoring the company's financial situation and predicting its future development becomes important. Assessing the financial health of business entities using various models is an important area in not only scientific research, but also business practice.

Purpose of the article: This study aims to predict the bankruptcy of companies in the engineering and automotive industries of the Slovak Republic using a multilayer neural network and logistic regression. Importantly, we develop a novel an early warning model for the Slovak engineering and automotive industries, which can be applied in countries with undeveloped capital markets.

Methods: Data on the financial ratios of 2,384 companies were used. We used a logistic regression to analyse the data for the year 2019 and designed a logistic model. Meanwhile, the data for the years 2018 and 2019 were analysed using the neural network. In the prediction model, we analysed the predictive performance of several combinations of factors based on the industry sector, use of the scaling technique, activation function, and ratio of the sample distribution to the test and training parts.

Findings & value added: The financial indicators ROS, QR, NWC/A, and PC/S reduce the likelihood of bankruptcy. Regarding the value of this work, we constructed an optimal network for the automotive and engineering industries using nine financial indicators on the input layer in combination with one hidden layer. Moreover, we developed a novel prediction model for bankruptcy using six of these indicators. Almost all sampled industries are privatised, and most companies are foreign owned. Hence, international companies as well as researchers can apply our models to understand their financial health and sustainability. Moreover, they can conduct comparative analyses of their own model with ours to reveal areas of model improvements.


Download data is not yet available.


Abid, I., Ayadi, R., Guesmi, K., & Mkaouar, F. (2022). A new approach to deal with variable selection in neural networks: an application to bankruptcy pre-diction. Annals of Operations Research, 313(2), 605?623. doi: 10.1007/s10479-021-04236-4.

Act No. 513/1991 Coll. in commercial code; 2013. Bratislava: Iura Edition.

Act No. 7/2005 Coll. bankruptcy and restructuring; 2013. Bratislava: Iura Edition.

Arafat, M. Y., Hoque, S., & Farid, D. M. (2017). Cluster-based under-sampling with random forest for multi-class imbalanced classification. In 11th interna-tional conference on software, knowledge, information management and ap-plications (SKIMA) (pp. 1?6). Malabe: IEEE. doi: 10.1109/SKIMA.2017.8294 105.

Ayadi, A. M., Lazrak, S., & Welch, R. (2017). Determinants of bankruptcy regime choice for Canadian public firms. Research in International Business and Finance, 42, 161?172. doi: 10.1016/j.ribaf.2017.04.043.

Belas, J., Cepel, M., Kliuchnikava, Y., & Vrbka, J. (2020). Market risk in the SMEs segment in the Visegrad group countries. Transformations in Business and Economics, 19(3), 678?693.

Brozyna, J., Mentel, G., & Pisula, T. (2016). Statistical methods of the bankruptcy prediction in the logistic sector in Poland and Slovakia. Transformations in Business and Economics, 15(1), 93?114.

Civelek, M., Gajdka, K., Svetlik, J., & Vavrecka, V. (2020a). Differences in the usage of online marketing and social media tools: evidence from Czech, Slo-vakian and Hungarian SMEs. Equilibrium. Quarterly Journal of Economics and Economic Policy, 15(3), 537?563. doi: 10.24136/eq.2020.024.

Civelek, M., Kljucnikov, A., Vavrecka, V., & Gajdka, K. (2020b). The usage of technology-enabled marketing tools by smes and their bankruptcy concerns: evidence from Visegrad countries. Acta Montanistica Slovaca, 25(3), 263?273. doi: 10.46544/AMS.v25i3.1.

Civelek, M., Kljucnikov, A., Fialova, V., Folvarcna, A., & Stoch, M. (2021). How innovativeness of family-owned SMEs differ depending on their characteris-tics? Equilibrium. Quarterly Journal of Economics and Economic Policy, 16(2), 413?428. doi: 10.24136/eq.2021.015.

Derindag, O. F., Lambovska, M., & Todorova, D. (2021). Innovation development factors: Switzerland experience. Pressburg Economic Review, 1(1), 57?65.

Dube, F., Nzimande, N., & Muzindutsi, P. F. (2021). Application of artificial neural networks in predicting financial distress in the JSE financial services and manufacturing companies. Journal of Sustainable Finance & Investment. Advance online publication. doi: 10.1080/20430795.2021.2017257.

Fitriyaningsih, I., Tampubolon, A. R., Lumbanraja, H. L., Pasaribu G. E., & Sito-rus, P. S. A. (2018). Implementation of artificial neural network to predict S&P 500 stock closing price. Journal of Physics: Conference Series, 1175, 012107. doi: 10.1088/1742- 6596/1175/1/012107.

Fitzpatrik, P. J. (1932). A comparison of the ratios of successful industrial enterprises with those of failed companies. Certified Public Accountant, 6, 727?731.

Garcia, J. (2022). Bankruptcy prediction using synthetic sampling. Machine Learning with Applications, 9, 100343. doi: 10.1016/j.mlwa.2022.100343.

Genriha, I., Pettere, G., & Voronova, I. (2011). Entrepreneurship insolvency risk management: case Latvia. International Journal of Banking, Accounting and Finance, 3(1), 31?46. doi: 10.1504/IJBAAF.2011.039370.

Grumstrup, E. J., Sorensen, T., Misiuna, J., & Pachocka, M. (2021). Immigration and voting patterns in the European Union: evidence from five case studies and cross-country analysis. Migration Letters, 18(5), 573?589. doi: 10.33182/ml.v1 8i5.943.

Gulka, M. (2016). Bankruptcy prediction model of commercial companies operat-ing in the conditions of the Slovak Republic. Forum Statisticum Slovacum, 12, 16?22.

Harumova, A., & Janisova, M. (2014). Rating Slovak enterprises by scoring func-tions. Ekonomicky Casopis (Journal of Economy), 62(5), 522?539.

Horak, J., Vrbka J., & Suler, P. (2020a). Support vector machine methods and artificial neural networks used for the development of bankruptcy prediction models and their comparison. Journal of Risk and Financial Management, 13(3), 60. doi: 10.3390/jrfm13030060.

Horak, J., Krulicky, T., Rowland, Z., & Machova, V. (2020b). Creating a compre-hensive method for the evaluation of a company. Sustainability, 12(21), 1?23. doi: 10.3390/su12219114.

Horvathova, J., & Mokrisova, M. (2020). Comparison of the results of a data envelopment analysis model and logit model in assessing business financial health. Information, 11(3), 160. doi: 10.3390/info11030160.

Horvathova, J., Mokrisova, M., & Petruska, I. (2021). Selected methods of pre-dicting financial health of companies: neural networks versus discriminant analysis. Information, 12(12), 505. doi: 10.3390/info12120505.

Hsieh, W. K, Liu, S. M., & Hsieh, S. Y. (2006). Hybrid neural network bankruptcy prediction: an integration of financial ratios, intellectual capital ratios, MDA, and neural network learning. In Proceedings of the 9th joint international con-ference on information sciences (JCIS-06). Advances in intelligent systems re-search. Atlantis Press. doi: 10.2991/jcis.2006.323.

Hurtosova, J. (2009). Construction of a rating model, a tool for assessing the creditworthiness of a company. Bratislava: Economic University in Bratislava.

Charambous, C. H., Charitou, A., & Kaourou, F. (2000). Comparative analysis of artificial neural network models: application in bankruptcy prediction. Annals of Operations Research, 99(1), 403?425. doi: 10.1023/A:1019292321322.

Chen, H. J., Huang, S. Y., & Lin, Ch. S. (2009). Alternative diagnosis of corporate bankruptcy: a neuro fuzzy approach. Expert Systems with Applications, 36(4), 7710?7720. doi: 10.1016/j.eswa.2008.09.023.

Chen, Y. S., Lin, Ch. K., Lo, Ch. M., Chen, S. F., & Liao, Q. J. (2021). Compara-ble studies of financial bankruptcy prediction using advanced hybrid intelli-gent classification models to provide early warning in the electronics industry. Mathematics, 9(20), 2622. doi: 10.3390/math9202622.

Chung, Ch. Ch., Chen, T. S., Lin, L. H., Lin, Y. Ch., & Lin, Ch. M. (2016). Bank-ruptcy prediction using cerebellar model neural networks. International Jour-nal of Fuzzy Systems, 18(2), 160?167. doi: 10.1007/s40815-015-0121-5.

Iturriaga, F. J. L., & Sanz, I. P. (2015). Bankruptcy visualization and prediction using neural networks: a study of U.S. commercial banks. Expert Systems with Applications, 42(6), 2857?2869. doi: 10.1016/j.eswa.2014.11.025.

Jabeur, S. B. (2017). Bankruptcy prediction using partial least squares logistic regression. Journal of Retailing and Consumer Services, 36, 197?202. doi: 10.1016/j.jretconser.2017.02.005.

Jakubik, P., & Teply, P. (2011). The JT index as an indicator of financial stability of corporate sector. Prague Economic Papers, 20(2), 157?176. doi: 10.18267 /j.pep.394.

Jardin, P. (2018). Failure pattern-based ensembles applied to bankruptcy forecast-ing. Decision Support Systems, 107, 64?77. doi: 10.1016/j.dss.2018.01.003.

Jencova, S., Stefko, R., & Vasanicova, P. (2020). Scoring model of the financial health of the electrical engineering industry?s non-financial corporations. Energies, 13(17), 1?17. doi: 10.3390/en13174364.

Kabir, H. (2021). Notion of belonging in the nation-state: gendered construction of international migration aspirations among university students in Bangla-desh. Migration Letters, 18(4), 463?476. doi: 10.33182/ml.v18i4.1158.

Kalinova, E. (2021). Artificial intelligence for cluster analysis: case study of transport companies in Czech Republic. Journal of Risk and Financial Management, 14(9), 411. doi: 10.3390/jrfm14090411.

Kasgari, A. A., Divsalar, M., Javid, M. R., & Ebrahimian, S. J. (2013). Prediction of bankruptcy Iranian corporations through artificial neural network and probit-based analyses. Neural Computing and Applications, 23, 927?936. doi: 10.1007 /s00521-012-1017-z.

Khan, K. A., Dankiewicz, R., Kliuchnikava, Y., & Olah, J. (2020). How do entre-preneurs feel bankruptcy? International Journal of Entrepreneurial Knowledge, 8(1), 89?101. doi:10.37335/ijek.v8i1.103.

Kim, S. Y. (2011). Prediction of hotel bankruptcy using support vector machine, artificial neural network, logistic regression, and multivariate discriminant analysis. Service Industries Journal, 31(3), 441?468. doi: 10.1080/026420608 02712848.

Kim, M. J., & Kang, D. K. (2010). Ensemble with neural networks for bankruptcy prediction. Expert Systems with Applications, 37(4), 3373?3379. doi: 10.1016/j.eswa.2009.10.012.

Kim, S., Mun, B. M., & Bae, S. J. (2018). Data depth based support vector ma-chines for predicting corporate bankruptcy. Applied Intelligence, 48(3), 791?804. doi: 10.1007/s10489-017-1011-3.

Kimoto, T., Asakawa, K., Yoda, M., & Takeoka, M. (1990). Stock market predic-tion system with modular neural networks. In 1990 IJCNN international joint conference on neural networks (IJCNM-90), INT Neural Network SOC, San Diego: IEEE. doi: 10.1109/IJCNN.1990.137535.

Kitowski, J., Kowal-Pawul, A., & Lichota, W. (2022). Identifying symptoms of bankruptcy risk based on bankruptcy prediction models - a case study of Po-land. Sustainability, 14(3), 416. doi: 10.3390/su14031416.

Kliestik, T., Vrbka, J., & Rowland, Z. (2018). Bankruptcy prediction in Visegrad group countries using multiple discriminant analysis. Equilibrium-Quarterly Journal of Economics and Economic Policy, 13(3), 569?593. doi: 10.24136/e q.2018.028.

Kljucnikov, A., Civelek, M., Polach, J., Mikolas, Z., & Banot, M. (2020a). How do security and benefits instill trustworthiness of a digital local currency? Oeconomia Copernicana, 11(3), 433?465. doi: 10.24136/oc.2020.018.

Kljucnikov, A., Civelek, M., Voznakova, I., & Krajcik, V. (2020b). Can discounts expand local and digital currency awareness of individuals depending on their characteristics? Oeconomia Copernicana, 11(2), 239?266. doi: 10.24136/oc.20 20.010.

Kljucnikov, A., Civelek, M., Fialova, V., & Folvarcna, A. (2021). Organizational, local, and global innovativeness of family-owned SMEs depending on firm-individual level characteristics: evidence from the Czech Republic. Equilibrium. Quarterly Journal of Economics and Economic Policy, 16(1), 169?184. doi: 10.24136/eq.2021.006.

Kolkova, A., & Kljucnikov, A. (2021). Demand forecasting: an alternative ap-proach based on technical indicator Pbands. Oeconomia Copernicana, 12(4), 863?894. doi: 10.24136/oc.2021.028.

Korol, T. (2019). Dynamic bankruptcy prediction models for European enterpris-es. Journal of Risk and Financial Management, 12(4), 185. doi: 10.3390/jrfm120 40185.

Korol, T., & Fotiadis, A. K. (2022). Implementing artificial intelligence in fore-casting the risk of personal bankruptcies in Poland and Taiwan. Oeconomia Copernicana, 13(2), 407?438. doi: 10.24136/oc.2022.013.

Kovacova, M. C, & Kliestik, T. (2017). Logit and probit application for the prediction of bankruptcy in Slovak companies. Equilibrium. Quarterly Journal of Economics and Economy Policy, 12(4), 775?791. doi: 10.24136/eq.v12i4.40.

Kral, P., Musa, H., Lazaroiu, G., Misankova, M., & Vrbka, J. (2018). Comprehen-sive assessment of the selected indicators of financial analysis in the context of failing companies. Journal of International Studies. Szczecin, 11(4), 282?294. doi: 10.14254/2071-8330.2018/11-4/20.

Krulicky, T., Kalinova, E., & Kucera, J. (2020). Machine learning prediction of USA export to PRC in context of mutual sanction. Littera Scripta, 13(1), 83?101. doi: 10.36708/Littera_Scripta2020/1/6.

Lee, K. Ch., Han, I., & Kwon, Y. (1996). Hybrid neural network models for bank-ruptcy predictions. Decision Support Systems, 18, 63?72. doi: 10.1016/0167-9236(96)00018-8.

Lyocsa, S., Vasanicova, P., Misheva, B. H., & Vateha, M.D. (2022). Default or profit scoring credit systems? Evidence from European and US peer-to-peer lending markets. Financial Innovation, 8(1), 32. doi: 10.1186/s40854-022-0033 8-5.

Marcinkevicius, R., & Kanapickiene, R. (2014). Bankruptcy prediction in the sector of construction in Lithuania. Procedia Social And Behavioral Sciences. 156, 553?557. doi: 10.1016/j.sbspro.2014.11.239.

Merkevicius, E., Garsva, G., & Girdzijauskas, S. (2006). A hybrid SOM?Altman model for bankruptcy prediction. In V. N. Alexandrov, G. D. VanAlbada, P. M. A. Sloot & J. Dongarra (Eds.). Conference: computational science ? ICCS 2006, 6th international conference, reading (pp. 364?371). Berlin: Springer-Verlag.

Metzker, Z., Marousek, J., Zvarikova, K., & Hlawiczka, R. (2021). The perception of SMEs bankruptcy concerning CSR implementation. International Journal of Entrepreneurial Knowledge, 9(2), 85?95. doi: 10.37335/ijek.v9i2.133.

Mihalovic, M. (2016). Performance comparison of multiple discriminant analysis and logit models in bankruptcy prediction. Economics and Sociology, 9(4), 101?118. doi: 10.14254/2071-789X.2016/9-4/6.

Nachev, A., Hill, S., & Barry, Ch. (2010). Fuzzy, distributed, instance counting, and default artmap neural networks for financial diagnosis. International Journal of Information Technology & Decision Making, 9(6), 959?978. doi: 10.1142/S0219622010004111.

Neves, J. C., & Vieira, A. (2006). Improving bankruptcy prediction with hidden layer learning vector quantization. European Accounting Review, 15(2), 253?271. doi: 10.1080/09638180600555016.

Noga, T., & Adamowicz, K. (2021). Forecasting bankruptcy in the wood industry. European Journal of Wood and Wood Products, 79, 735?743. doi: 10.1007/s00 107-020-01620-y.

Nyitrai, T., & Virag, M. (2019). The effects of handling outliers on the performance of bankruptcy prediction models. Socio-Economic Planning Sciences, 67, 34?42. doi: 10.1016/j.seps.2018.08.004.

Obradovic, D. B., Jaksic, D., Rupic, I. B., & Andric, M. (2018). Insolvency prediction model of the company: the case of the Republic of Serbia. Economic Research-Ekonomska Istrazivanja, 31(1), 139?157. doi: 10.1080/1331677X.20 17.1421990.

Ocal, M. E., Oral, E. L., Erdis, E., & Vural, G. (2007). Industry financial ratios?application of factor analysis in Turkish construction industry. Building and Environment, 42(1), 385?392. doi: 10.1016/j.buildenv.2005.07.023.

O´Leary, D. E. (1998). Using neural networks to predict corporate failure. International Journal of Intelligent Systems in Accounting, Finance & Man-agement, 7, 187?197. doi: 10.1002/(SICI)1099-1174(199809)7:3<187::AID-ISAF144>3.0.CO;2-7.

Papana, A., & Spyridou, A. (2020). Bankruptcy prediction: the case of the Greek market. Forecasting, 2(4), 505?525. doi: 10.3390/forecast2040027.

Peat, M., & Jones, S. (2012). Using neural nets to combine information sets in corporate bankruptcy prediction. Intelligent Systems in Accounting Finance & Management, 19(2), 90?101. doi: 2350/10.1002/isaf.334.

Pozorska, J., & Scherer, M. (2018). Company bankruptcy prediction with neural networks. In L. Rutkowski, R. Scherer, M. Korytkowski, W. Pedrycz, R. Ta-deusiewicz & J. Zurada (Eds). Artificial intelligence and soft computing. Lec-ture notes in computer science. Springer, Cham. doi: 10.1007/978-3-319-91253 -0_18.

Privara, A., & Rievajová, E. (2021). Migration governance in Slovakia during the COVID-19 crisis. Migration Letters, 18(3), 331?338. doi: 10.33182/ml.v18 i3.1469.

Psarska, M., Haskova, S., & Machova, V. (2019). Performance management in small and medium-sized manufacturing enterprises operating in automotive in the context of future changes and challenges in SR. Ad Alta: Journal of Interdisciplinary Research, 9(2), 281?287.

Ptak-Chmielewska, A. (2019). Predicting micro-enterprise failures using data mining techniques. Journal of Risk and Financial Management, 12(1), 30. doi: 10.3390/jrfm12010030.

Purvinis, O., Sukys, P., & Virbickaite, R. (2007). Adaptive network-based fuzzy inference system for enterprise bankruptcy prediction. In 2nd international conference on changes in social and business environment (pp. 198?202). Kaunas University Technology Press.

Purvinis, O., Virbickaite, R., & Sukys, P. (2008). Interpretable nonlinear model for enterprise bankruptcy prediction. Nonlinear Analysis: Modelling and Con-trol, 13(1), 61?70. doi: 10.15388/NA.2008.13.1.14589.

Rahman, M., Li Sa, Ch., & Masud, A. K. (2021). Predicting firms´ financial dis-tress: an empirical analysis using the F-score model. Journal of Risk and Financial Management, 14(5), 199. doi: 10.3390/jrfm14050199.

Sahoo, M., & Pradhan, J. (2021). Adaptation and acculturation: resettling dis-placed tribal communities from wildlife sanctuaries in India. Migration Let-ters, 18(3), 237?259. doi: 10.33182/ml.v18i3.877.

Salehi, M., & Davoudi Pour, M. (2016). Bankruptcy prediction of listed compa-nies on the Tehran Stock Exchange. International Journal of Law and Man-agement, 58(5), 545?561. doi: 10.1108/IJLMA-05-2015-0023.

Salehi, M., & Mousavi Shiri, M. (2016). Different bankruptcy prediction patterns in an emerging economy: Iranian evidence. International Journal of Law and Management, 58(3), 258?280. doi: 10.1108/IJLMA-05-2015-0022.

SARIO (2021a). Machinery & equipment industry in Slovakia. Bratislava: Slovak Investment and Trade Development Agency.

SARIO (2021b). Automotive sector in Slovakia. Bratislava: Slovak Investment and Trade Development Agency.

Shetty, S. H., & Vincent, T. N. (2021). The role of board independence and own-ership structure in improving the efficacy of corporate financial distress pre-diction model: evidence from India. Journal of Risk and Financial Manage-ment, 14(7), 333. doi: 10.3390/jrfm14070333.

Shirata, C. Y. (1998). Financial ratios as predictors of bankruptcy in Japan: an empirical research. In Proceedings of the second Asian Pacific interdiscipli-nary research in accounting conference. Retrieved from eng/APIRA98.html.

Slavicek, O., & Kubenka, M. (2016). Bankruptcy prediction models based on the logistic regression for companies in the Czech Republic. In Proceedings of the 8th international scientific conference managing and modelling of financial risks (pp. 924?931). Ostrava: VŠB-TU of Ostrava.

Smith, R. F., & Winakor, A. H. (1935). Changes in the financial structure of un-successful industrial corporations. Urbana, IL, USA: University of Illinois.

Sousa, A., Braga, A., & Cunha, J. (2022). Impact of macroeconomic indicators on bankruptcy prediction models: case of the Portuguese construction sector. Quantitative Finance and Economics, 6(3), 405?432. doi: 10.3934/QFE.202 2018.

Stefancik, R., Nemethova, I., & Seresova, T. (2021). Securitisation of migration in the language of Slovak far-right populism. Migration Letters, 18(6), 731. doi: 10.33182/ml.v18i6.1387.

Stefko, R., Horvathova, J., & Mokrisova, M. (2020). Bankruptcy prediction with the use of data envelopment analysis: an empirical study of Slovak businesses. Journal of Risk and Financial Management, 13(9), 212. doi: 10.3390/jrfm13 090212.

Stefko, R., Horvathova, J., & Mokrisova, M. (2021). The application of graphic methods and the DEA in predicting the risk of bankruptcy. Journal of Risk and Financial Management, 14(5), 220. doi: 10.3390/jrfm14050220.

Stehel, V., Horak, J., & Kruclicky, T. (2021). Business performance assessment of small and medium-sized enterprises: evidence from the Czech Repub-lic. Problems and Perspectives in Management, 19(3), 430?439. doi: 10.21511/ ppm.19(3).2021.35.

Svabova, L., Michalkova, L., Durica, M., & Nica, E. (2020). Business failure prediction for Slovak small and medium-sized companies. Sustainability, 12, 4572. doi: 10.3390/su12114572.

Takata, Y., Hosaka, T., & Ohnuma, H. (2015). Financial ratios extraction using adaboost for delisting prediction. Proceedings of the Seventh International Conference on Information, 158?161.

Tam, K. (1991). Neural network models and the prediction of bank bankruptcy. Omega, 19(5), 429?445. doi: 10.1016/0305-0483(91)90060-7.

Tinoco, M. H., & Wilson, N. (2013). Financial distress and bankruptcy prediction among listed companies using accounting, market and macroeconomic variables. International Review of Financial Analysis, 30, 394?419. doi: 10.101 6/j.irfa.2013.02.013.

Tsai, Ch. F. (2009). Feature selection in bankruptcy prediction. Knowledge-Based Systems, 22(2), 120?127. doi: 10.1016/j.knosys.2008.08.002.

Tsai, Ch. F., & Wu, J. W. (2008). Using neural network ensembles for bankruptcy prediction and credit scoring. Expert Systems with Applications, 34(4), 2639?2649. doi: 10.1016/j.eswa.2007.05.019.

Tsakonas, A., Dounias, G., Doumpos, M., & Zopounidis, C. (2006). Bankruptcy prediction with neural logic networks by means of grammar-guided genetic programming. Expert Systems with Applications, 30(3), 449?461. doi: 10.1016/ j.eswa.2005.10.009.

Tseng, F. M., & Lin, L. (2005). A quadratic interval logit model for forecasting bankruptcy. Omega, 33(1), 85?91. doi: 10.1016/

Tumpach, M., Surovicova, A., Juhaszova, Z., Marci, A., & Kubascikova, Z. (2020). Prediction of the bankruptcy of Slovak companies using neural net-works with SMOTE. Journal of Economics, 68(10), 1021?1039. doi: 10.31577/ ekoncas.2020.10.03.

Valaskova, K., Durana, P., Adamko, P., & Jaros, J. (2020). Financial compass for Slovak enterprises: modeling economic stability of agricultural entities. Jour-nal of Risk and Financial Management, 13(5), 92. doi: 10.3390/jrfm13050092.

Valecky, J., & Slivkova, E. (2012). Microeconomic scoring model of Czech firms? bankruptcy. Ekonomicka Revue. Central European Review of Economic Issues, 15, 15?26. doi: 10.7327/cerei.2012.06.02.

Vochozka, M., Vrbka, J., & Suler, P. (2020). Bankruptcy or success? The effec-tive prediction of a company?s financial development using LSTM. Sustaina-bility, 12(18), 7529. doi: 10.3390/su12187529.

Wang, H., & Liu, X. (2021). Undersampling bankruptcy prediction: Taiwan bank-ruptcy data. Plos One, 16(7), e0254030. doi: 10.1371/journal.pone.0254030.

Wang, L. (2019). Financial distress prediction for listed enterprises using fuzzy C-means. Littera Scripta, 12(1), 1?9.

Wang, R., & Zha, B. (2019). A research on the optimal design of BP neural net-work based on improved GEP. International Journal of Pattern Recognition and Artificial Intelligence, 33(3), 1959007. doi: 10.1142/S0218001419590079.

Wrzosek, M., & Ziemba, A. (2009). Construction of a rating based on a bankruptcy prediction model. Credit Research Center, The University of Edinburgh, 1?19.

Youn, H., & Gu, Z. (2010). Predict US restaurant firm failures: the artificial neural network model versus logistic regression model. Tourism and Hospitality Research, 10(3), 171?187. doi: 2350/10.1057/thr.2010.2.

Yousaf, M., & Bris, P. (2021). Assessment of bankruptcy risks in Czech compa-nies using regression analysis. Problems and Perspectives in Management, 19(3), 46?55. doi: 10.21511/ppm.19(3).2021.05.




How to Cite

Gavurova, B., Jencova , S., Bacik , R., Miskufova, M., & Letkovsky , S. (2022). Artificial intelligence in predicting the bankruptcy of non-financial corporations. Oeconomia Copernicana, 13(4), 1215–1251.




Most read articles by the same author(s)