A review of inflation from 1906 to 2022: a comprehensive analysis of inflation studies from a global perspective





Inflation, bibliometrics, visualization tool, policy suggestions


Research background: Inflation has always been the core issue of economic research and there are many academic research achievements in this field. In recent years, global inflation has intensified, and many scholars focus on research in this field again, providing certain reference value for countries around the world to formulate corresponding macro policies.

Purpose of the article: The five-year impact factors are used as the evaluation criteria in this paper, and 1,637 high-quality documents on inflation from 1906 to 2022 are collected from the Web of Science Core Collection database. Using bibliometrics, a comprehensive review of influential literature in the field of inflation is conducted to reveal the evolution and trends of the field.

Methods: First, we focus on these high-quality documents about the descriptive statistical characteristics, high cited documents and high impact factor journals. Then, based on the visualization tool, the cooperative network of countries/regions, authors and institutions is depicted and the cooperative relationship between them is determined. At the same time, the most influential countries/regions, authors and institutions are identified by analyzing the citation structure. In addition, through thematic and keyword analysis, the topic hotspots and future research trends of high-quality literature in the field of inflation are deduced.

Findings & value added: On the whole, the research on inflation in the United States is relatively mature, and has produced a large number of influential academic cooperation results. Finally, we have a series of discussions on the history of inflation in the United States and policy suggestions. In the future, governments of various countries, especially the United States, will still face certain challenges in how to formulate policies and measures to mitigate the impact of inflation.


Download data is not yet available.


Albulescu, C. T., & Oros, C. (2020). Inflation, uncertainty, and labour market con-ditions in the US. Applied Economics, 52(52), 5770?5782. doi: 10.1080/000368 46.2020.1772458.

Apergis, E., & Apergis, N. (2021). Inflation expectations, volatility and Covid-19: evidence from the US inflation swap rates. Applied Economics Letters, 28(15), 1327?1331. doi: 10.1080/13504851.2020.1813245.

Archambault, É., & Larivi?re, V. (2009). History of the journal impact factor: con-tingencies and consequences. Scientometrics, 79(3), 635?649. doi: 10.1007/s11 192-007-2036-x.

Argy, V. (1970). Structural inflation in developing countries. Oxford Economic Papers, 22(1), 73?85. doi: 10.1093/oxfordjournals.oep.a041153.

Auerbach, R. D. (1976). A demand-pull theory of deflation and inflation. The Manchester School, 44(2), 99?111. doi: 10.1111/j.1467-9957.1976.tb00128.x.

Barro, R. J. (1974). Are government bonds net wealth? Journal of Political Economy, 82(6), 1095?1117. doi: 10.1086/260266.

Basu, P., Gillman, M., & Pearlman, J. (2012). Inflation, human capital and Tobin?s q. Journal of Economic Dynamics and Control, 36(7), 1057?1074. doi: 10.1016 /j.jedc.2012.02.004.

Bredin, D., & Fountas, S. (2018). US inflation and inflation uncertainty over 200 years. Financial History Review, 25(2), 141?159. doi: 10.1017/S096856501800 0045.

Burdekin, R. C. K. (1992). Assessing the impact of US macroeconomic policies and inflation rates on the australian economy. Economic Record, 68(1), 16?30. doi: 10.1111/j.1475-4932.1992.tb01746.x.

Casadevall, A., & Fang, F. C. (2014). Causes for the persistence of impact factor mania. MBio, 5(2), e00064-14. doi: 10.1128/mBio.00064-14.

Ciccarelli, M., & García, J. A. (2021). Expectation spillovers and the return of inflation. Economics Letters, 209, 110119. doi: 10.1016/j.econlet.2021.110119.

De, K., Compton, R. A., & Giedeman, D. C. (2022). Oil shocks and the U.S. econo-my in a data-rich model. Economic Modelling, 108, 105755. doi: 10.1016/j.ec onmod.2022.105755.

Deng, Q., Xiao, W., & Yan, H. (2022). The spillover effects of U.S. monetary policy normalization on the BRICS based on panel VAR Model. Journal of Mathematics, 2022, 3844128. doi: 10.1155/2022/3844128.

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50(4), 987?1007. doi: 10.2307/1912773.

Friedman, M. (1968). The role of monetary policy. American Economic Review, 58(1). 1?17.

Fuhrer, J. C. (1995). The persistence of inflation and the cost of disinflation. New England Economic Review, Jan, 3?16.

Garfield, E., & Sher, I. H. (1963). New factors in the evaluation of scientific litera-ture through citation indexing. American Documentation, 14(3), 195?201. doi: 10.1002/asi.5090140304.

Glänzel, W., & Moed, H. F. (2002). Journal impact measures in bibliometric re-search. Scientometrics, 53(2), 171?193. doi: 10.1023/A:1014848323806.

Gordon, R. J., & Hall, R. E. (1985). Understanding inflation in the 1980s. Brookings Papers on Economic Activity, 1, 263?302. doi: 10.2307/2534552.

Hendershott, P. H., & Van Horne, J. C. (1973). Expected inflation implied by capi-tal market rates. Journal of Finance, 28(2), 301?314. doi: 10.1111/j.1540-6261. 1973.tb01773.x

Hilmola, O.-P. (2021). Inflation and hyperinflation countries in 2018-2020: risks of different assets and foreign trade. Journal of Risk and Financial Manage-ment, 14(12), 618. doi: 10.3390/jrfm14120618.

Johansen, S., & Juselius, K. (2009). Maximum likelihood estimation and inference on cointegration - with applications to the demand for money: inference on cointegration. Oxford Bulletin of Economics and Statistics, 52(2), 169?210. doi: 10.1111/j.1468-0084.1990.mp52002003.x.

Korobilis, D. (2017). Quantile regression forecasts of inflation under model uncer-tainty. International Journal of Forecasting, 33(1), 11?20. doi: 10.1016/j.ijforec ast.2016.07.005.

Laidler, D. E. W., & Parkin, J. M. (1977). Inflation: a survey. Surveys of applied economics. London: Palgrave Macmillan Press, 169?237.

Liu, Z., Waggoner, D. F., & Zha, T. (2009). Asymmetric expectation effects of re-gime shifts in monetary policy. Review of Economic Dynamics, 12(2), 284?303. doi: 10.1016/j.red.2008.10.001.

Machlup, F. (1960). Another view of cost-push and demand-pull inflation. Review of Economics and Statistics, 42(2), 125?139. doi: 10.2307/1926532.

Marsilli, C. (2017). Nowcasting US inflation using a MIDAS augmented Phillips curve. International Journal of Computational Economics and Econometrics, 7(1/2), 64. doi: 10.1504/IJCEE.2017.10000632.

Pivetta, F., & Reis, R. (2007). The persistence of inflation in the United States. Journal of Economic Dynamics and Control, 31(4), 1326?1358. doi: 10.1016/j. jedc.2006.05.001.

S. Adriaanse, L., & Rensleigh, C. (2013). Web of Science, Scopus and Google Scholar: a content comprehensiveness comparison. Electronic Library, 31(6), 727?744. doi: 10.1108/EL-12-2011-0174.

Sala, S. D., & Crawford, J. R. (2006). Impact factor as we know it handicaps neuro-psychology and neuropsychologists. Cortex, 42(1), 1?2. doi: 10.1016/S0010-9452(08)70314-9.

Salisu, A. A., Swaray, R., & Adediran, I. A. (2019). Can urban coffee consumption help predict US inflation? Journal of Forecasting, 38(7), 649?668. doi: 10.100 2/for.2589.

Shinkai, Y. (1973). A model of imported inflation. Journal of Political Economy, 81(4), 962?971. doi: 10.1086/260091.

Stopar, K., & Bartol, T. (2019). Digital competences, computer skills and infor-mation literacy in secondary education: mapping and visualization of trends and concepts. Scientometrics, 118(2), 479?498. doi: 10.1007/s11192-018-2990-5.

Tarragona, J., de Gracia, A., & Cabeza, L. F. (2020). Bibliometric analysis of smart control applications in thermal energy storage systems. A model predictive control approach. Journal of Energy Storage, 32, 101704. doi: 10.1016/j.est.2 020.101704.

Taylor, J. B. (1999). The robustness and efficiency of monetary policy rules as guidelines for interest rate setting by the European central bank. Journal of Monetary Economics, 43(3), 655?679. doi: 10.1016/S0304-3932(99)00008-2.

Tunger, D., & Eulerich, M. (2018). Bibliometric analysis of corporate governance research in German-speaking countries: applying bibliometrics to business re-search using a custom-made database. Scientometrics, 117(3), 2041?2059. doi: 10.1007/s11192-018-2919-z.

U.S. Bureau of Labor Statistics (2022a). Consumer Price Index for all urban con-sumers: all items in U.S. city average [CPIAUCSL]. FRED, Federal Reserve Bank of St. Louis. Retrieved from https://fred.stlouisfed.org/series/CPIA UCSL.

U.S. Bureau of Labor Statistics (2022b). Consumer Price Index for all urban con-sumers: all items less food and energy in U.S. city average [CPILFESL]. FRED, Federal Reserve Bank of St. Louis. Retrieved from https://fred.stlouisf ed.org/series/CPILFESL.

Wang, Q., Yang, X., & Li, R. (2022). The impact of the COVID-19 pandemic on the energy market-A comparative relationship between oil and coal. Energy Strat-egy Reviews, 39, 100761. doi: 10.1016/j.esr.2021.100761.

Wang, X., Chang, Y., Xu, Z., Wang, Z., & Kadirkamanathan, V. (2021a). 50 Years of international journal of systems science: a review of the past and trends for the future. International Journal of Systems Science, 52(8), 1515?1538. doi: 10.1080/00207721.2020.1862937.

Wang, X., Xu, Z., & Škare, M. (2020). A bibliometric analysis of Economic Re-search-Ekonomska Istraživanja (2007?2019). Economic Research-Ekonomska Istraživanja, 33(1), 865?886. doi: 10.1080/1331677X.2020.1737558.

Wang, X., Xu, Z., Qin, Y., & Skare, M. (2021b). Service networks for sustainable business: a dynamic evolution analysis over half a century. Journal of Busi-ness Research, 136, 543?557. doi: 10.1016/j.jbusres.2021.07.062.

Wang, X., Xu, Z., Su, S.-F., & Zhou, W. (2021c). A comprehensive bibliometric analysis of uncertain group decision making from 1980 to 2019. Information Sciences, 547, 328?353. doi: 10.1016/j.ins.2020.08.036.

Weber, W. E. (1995). Some monetary facts. Quarterly Review, 19(3), 2?11. doi: 10.21034/qr.1931.

Woodford, M. (2013). Macroeconomic analysis without the rational expectations hypothesis. Annual Review of Economics, 5(1), 303?346. doi: 10.1146/annurev-economics-080511-110857.

Xie, H., Zhang, Y., Wu, Z., & Lv, T. (2020). A bibliometric analysis on land degra-dation: current status, development, and future directions. Land, 9(1), 28. doi: 10.3390/land9010028.

Xu, Z., Wang, X., Wang, X., & Skare, M. (2021). A comprehensive bibliometric analysis of entrepreneurship and crisis literature published from 1984 to 2020. Journal of Business Research, 135, 304?318. doi: 10.1016/j.jbusres.2021.0 6.051.

Yang, J., Guo, H., & Wang, Z. (2006). International transmission of inflation among G-7 countries: a data-determined VAR analysis. Journal of Banking & Fi-nance, 30(10), 2681?2700. doi: 10.1016/j.jbankfin.2005.10.005.

Zhang, C. (2016). How has globalisation affected inflation in China? World Economy, 39(2), 301?313. doi: 10.1111/twec.12302.




How to Cite

Wang, X. ., Xu, Z. ., Wang, X. ., & Skare, M. . (2022). A review of inflation from 1906 to 2022: a comprehensive analysis of inflation studies from a global perspective. Oeconomia Copernicana, 13(3), 595–631. https://doi.org/10.24136/oc.2022.018