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Abstract  −  A diagnostic and control system for a turbine is presented. The influence of the turbine controller on regulation 

processes in the power system is described. Measured quantities have been characterized and methods for detecting errors have 

been determined. The paper presents the application of fuzzy neural networks (fuzzy-NNs) for diagnosing sensor faults in the 

control systems of a steam turbine. The structure of the fuzzy-NN model and the model’s method of learning, based on 

measurement data, are presented. Fuzzy-NNs are used to detect faults procedures. The fuzzy-NN models are created and verified 
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INTRODUCTION 

The basis of many well-known methods of designing 

control, diagnostics and forecasting systems, is knowledge of 

the analytical model of a selected fragment of the 

technological process of the object, i.e., so-called partial 

particle models, developed on the basis of the laws of 

physics and cause-and-effect relation-ships [1-5]. 

Unfortunately, the construction of such models is often 

impossible, or the obtained models are inconvenient to use. 

On the other hand, the use of simplified and inaccurate 

models makes it impossible to use the analytical redundancy 

of the measurement path, which can lead to false diagnoses 

generated by diagnostic systems [5, 6]. 

Therefore, in diagnostic systems, “artificial intelligence” 

models are used: fuzzy models and neural networks or a 

combination of both techniques, i.e., fuzzy neural networks 

(fuzzy-NNs) [7-9, 10]. This paper contains an example of such 

a model, used in a steam turbine control system in order to 

detect damage in measurement paths. 

The turbines referred to in the article are installed on 

large power units involved in the regulation of the electrical 

power system. The power blocks currently being built are 

designed in such a manner as to withstand extremely high 

steam parameters; so-called supercritical parameters. Due 

to prevailing eco-nomic conditions, the power of such units 

is 1,000 MW [12]. Such high unit power and very high 

parameters of the processed steam (temperature and 

pressure) forces the use of appropriate diagnostic measures 

for the power-unit blocks. 

Modelling, including systems using “artificial 

intelligence”, is of great importance for the development of 

modern energy systems. Many models have been 

developed for conventional energy systems [13, 14] and for 

renewable energy systems [14, 5]. 

There are relatively few sources using fuzzy-NN 

modelling for diagnostic purposes in steam turbines. 

However, publications on modelling and diagnostics of wind 

turbines [11] and gas turbines [16] can be found. 

This article presents research on a 120-MW power block, 

be-cause such a block has been made available for testing. 

The diagnostic system presented, which uses fuzzy-NN 

systems, is scalable and can be transferred to the power unit 

working in the supercritical parameter region, e.g., the 900-

MW class. This development has already been carried out. It 

is facilitated by the fact that on modern power units (usually 

with DCS systems), there is a large quantity of data that can 

be used to “train” fuzzy-NN models.  

Research was conducted to test various model 

structures and relationships between measurement signals. 

I. TURBINE CONTROL SYSTEM 

In a power system, the energy unit of the boiler-turbine-

engine acts as complex, multidimensional regulation 
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system. It consists of numerous automatic regulating objects 

whose task is to maintain particular parameters at certain 

levels. These objects, which can control numerous 

parameters, act on the basis of cross coupling, which means 

that almost every input type interacts with many output 

types. It is possible to simulate the mutual connections of 

parameters measured by the energy control block [12]. The 

choice of a suitable method of modelling depends on the 

design of the system: at present there is increasing use of 

artificial intelligence, including artificial neural networks and 

fuzzy logic systems.  

The main task of the power unit, which is involved in the 

power and frequency regulation of the power system, is 

proper implementation of turbine set power changes 

(turbine and generator), which should be fast and, if 

possible, without delay or deformation, following the set 

power signal. One of the methods for ensuring the required 

rate of block load changes is to create an appropriate 

structure for the load control system, and in particular the 

turbine regulation system included within it. 

The principle of operation of the power-block load 

system with a leading turbine, is shown in Fig. 1. The power 

deviation resulting from the comparison of the real power P 

with the set power Pset is sent to the input of the regulator 

RP, whose output signal YH, through the electro-hydraulic 

converter ET of the regulator, controls the movement of the 

control valves of the turbine V. 

The boiler-pressure control unit regulates the fuel inflow 

by controlling the fuel feeder (FF). The main task of this 

system is to maintain pressure pT at the set pressure level. 

Under these conditions there is an equilibrium between the 

energy delivered by the fuel to the boiler and the energy 

output from boiler via steam. When overriding the pressure 

control unit using the Rp  characteristic, the regulated 

pressure pT and set pressure pset are compared.  

Fig. 1. Load control of the power unit with a leading turbine  
(B – boiler, T – turbine, G – generator, EPS – electric power sys-

tem, RP – power regulator, Rp – pressure regulator, FF – fuel 

feeder, YH – control signal, V – valves, ET – electro-hydraulic 

transducer, P – power, pT  – steam pressure, Pset – set point for 

power and pset  – set point for pressure) 

Currently, a new type of central regulator has been 

introduced in the Polish electro-energy system (power 

system) – LFC (load frequency control). The signal PW is 

transmitted to the generating unit. The PW signal is 

expressed in the form of a real number, which describes the 

set power value in MW, according to the ICCP protocol 

(Inter-Control Center Communication Protocol). In the case 

of three-way regulation, the Pz_100 signal, every 15 

minutes, carries information about the power baseline. The 

base power command, like the secondary regulation com-

mand, is sent in the form of a real number representing the 

set base power value in MW.  

The LFC regulator module processing the secondary 

regulation signals operates in real time with a closed 

feedback loop. It has a PI (proportional-integral) structure 

and produces a set power signal based on Equation (1). 

 

�� = − � · �	
 − �
� 
 �	
 · d�              (1) 

 

where 

ΔP is the set power output adjustment [MW], 

β is the proportional gain factor [1/MW], 

ACE is the regulatory error of the regulated area [MW] and 

T is the integration time constant of the integrator [s]. 

The area error ACE is determined by Equation (2). 

 
�	
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where 

ΔPi is the power transmission error [MW], 

K is the system constant [MW/Hz] and 

Δf is the frequency error [Hz]. 

Fig. 2. Block diagram of the  turbine power controller  
(T – turbine, G – generator, C – condenser, RP – power regulator, Rn – 

rotation regulator, YH – control signal, V – valves, ET – electro-

hydraulic transducer, P – power, pi  – oil pressure, pT – steam pressure, 

ps – absolute vapour pressure, Pset  – set point for power, nset – set point 

for rotation, PW and Pz_100 – signals from LFC, A/M – manual or 

automatic control, SPL – steam power limiter and VPL – vapour power 

limiter) 

The requirement for proper operation of the LFC control 

system is the achievement of a sufficiently fast response 

time to power variations in the system. This response time 

cannot exceed 30 s. In addition, the control band must be 

activated quickly enough. The activation should take, at 

most, 15 minutes, which means that for the control band, 

the minimum rate of power changes in the network must be 
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133 MW/min. This requirement is achieved by splitting the 

required power over individual generating units, since the 

rates of change for charging the generating units are then 

much lower. 

II. SENSOR IN TURBINE CONTROL SYSTEM  

The power unit is regulated via the turbine control valves 

(power regulation with a leading turbine). Suitable analogue 

and binary signals, used for control and protection in the 

control system, are introduced to the turbine controller 

(Fig.2). 

Measurement paths and control signals are divided into 

four groups as follows(Fig 3.).  

1. Measurements of physical quantities directly from the 

object, (e.g., power, pressure, steam flow). 

2. External signals coming directly from the electro-energy 

system or directly from the central controller, (e.g., PW – 

secondary set power, Pz_100 – three-way set power and f – 

voltage frequency in the electro-energy system). 

3. Electronic signals transmitted inside the regulator, (e.g., 

between the main regulator, the ignition switch and the 

terminal). 

4. Auxiliary measurements for the diagnosis of the actuator, 

(e.g., control oil pressure). 

The signals of groups (1) and (2) are determinate, while 

those of (3) and  (4) are stochastic. 

The basic output signal from the regulator is the control 

signal YH , which controls the operation of the turbine control 

valves. The value of this signal changes in the standard range 

of 0-20mA.The electro-hydraulic transducer ET converts the 

electrical signal into an oil pressure that controls the position 

of the turbine’s high-pressure servo valves. 

The basic quantities regulated in the system are the 

active power and rotational speed. Active power is supplied 

to the system through a measurement transducer, which 

measures the active power of the generator in a three-phase 

system. 

Before synchronizing the generator with the power grid, 

the rotational speed of the turbine is a controlled parameter. 

The rotational speed is measured using a toothed wheel and 

an inductive sensor. The acquired measurement signal, in 

the form of frequency, is transferred to the appropriate 

counter input of the controller. 

Measurement of the voltage frequency of the power 

grid is also transferred to the counter input of the controller. 

Since simultaneous turbine regulators allow the power block 

to operate via regulation of the electro-energy system, these 

systems must be adapted to receive the signals that control 

the system regulation (PW and Pz_100). Information 

exchange between the turbine control system and the LFC 

system controller is carried out by means of electronic links, 

according to the appropriate data exchange protocol. 

Other signals introduced into the condensing turbine 

controller, such as fresh steam pressure, absolute pressure 

in the con-denser, valve position and fresh steam mass flow, 

are supplied to the system to ensure good cooperation of 

the automatic steam pressure regulation system with the 

condensing turbine power control system. 

The measurement paths of these quantities are 

standard unipolar signals of 4-20 mA. 

 

 

 

Fig. 3. Measuring tracks in the turbine control system  

Table 1. Set of input signals  

Symbol Signal Unit 

P Electrical  power MW 

pT Steam pressure MPa 

ps Absolute vapour pressure in condenser % 

pi Oil pressure MPa 

m Steam mass flow t/h 

Y Opening degree of control valves % 

n Rotation of turbine min-1 

f Frequency Hz 

PW System set point for power MW 

Pz_100 Power set-point signal MW 

I Current signal mA 

 

Quantities such as the signal Pz_100 and the secondary 

control signal Pw, are transmitted to the system from the 

outside. The specificity of changes and the types of 

presented quantities enforce the use of specific methods of 

detecting damage to their measurement paths. Detection 

methods must be used here to assess the correctness of the 

received signal, on the basis of the analysis of one variable 

only, i.e., methods based on the control of process variables. 

The second group of process variables recorded by the 

controller are local signals received from a given power unit. 

Here methods based on controlling the connections 

between process variables can be used, in particular, object 

models. Determination of residues on the basis of a model is 

the most robust and reliable method of detection, provided 

that the model is accurate. The use of models in diagnostics 

for measurement paths allows parametric damages to be 

detected over time. 

Internal regulator signals, such as connections between 

the operator’s station or the terminal and the 

communication link with the visualization system, must be 

controlled online in online mode. Fault detection must 

adequately reconfigure the controller’s hardware structure 

[5]. 

III. FUZZY NEURAL NETWORK MODELS FOR DIAGNOSTIC 
SYSTEMS  

MODEL CONSTRUCTION 

The construction scheme of the model is presented in 
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Fig. 4. The fuzzy-NN structure can be divided into two main 

parts. The first part represents the so-called premise and is 

responsible for the fragment of the fuzzy rule “if...”. It 

implements the part of the inference mechanism 

responsible for calculating the level of firing of the rules. The 

second part represents the so-called conclusion 

corresponding to the fragment of fuzzy rule “than...” and 

calculates the output of the model. The “premise” part is 

identical for all types of network; the difference appears in 

the “conclusion” part of the model [14]. 

In Fig. 4, a fuzzy neural network is presented. Layer (D) 

rep-resents the firing level for individual rules. The firing level 

of rules is determined as the product of the value of 

membership functions included in the “premise”, while the 

“conclusion” is consistent with constants. This is the case for 

a model with two in-puts, one output and nine rules.  

This is only a simple example. Nine rules are not enough 

to build satisfactory models for diagnostic purposes.  

Fig. 4. Implementation of the FNN model with conclusions in 

the form of constants 

The “conclusions” of the presented network are 

contained in layers (D) and (E), and the weights wf
k represent 

the constants. The network shown in Fig. 4 can be 

considered as a special case of a Takagi-Sugeno-Kang fuzzy 

model, in which the “conclusions” of the rules, rather than 

the equations for linear input variables, contain constants. 

LEARNING MODELS 

After determining the type of network used, the 

structure be-gins to learn based on data collected from the 

object. The fuzzy-NN learning method can be based on a 

backward error propagation algorithm. It defines the 

method of selecting the network weights using gradient 

optimization methods. The basis of the algorithm is a 

criterion function. Its purpose is to minimize the weights in 

the network. 

In the considered case, the criterion function takes the 

following form (3). 

After determining the type of network used, the 

structure begins to learn based on data collected from the 

object. The fuzzy-NN learning method can be based on a 

backward error propagation algorithm. It defines the 

method of selecting the network weights using gradient 

optimization methods. The basis of the algorithm is a 

criterion function. Its purpose is to minimize the weights in 

the network. 

In the considered case, the criterion function takes the 

following form (3). 


��� = 1
2 �� − �∗�� (3) 

 

where 

t  is the reference value of the output from the model, 

y*  is the current value of the output from the model and 

W  is the weight of the network. 

 

 

Weighting updates take place each time after entering the 

training pair (X,t), where X is the network input, from the 

corresponding training set. After determining the criterion 

function, it should be minimized. This is done by modifying 

the network weights by a certain amount Δw in proportion 

to the gradient of the function. For a single weight w, 

dependencies (4) and (5) can be specified. 

�� = −� �
���
��  

(4) 

 

 

��� + 1� = ���� + ����� (5) 

where 

η is the learning factor,  

n is the current moment and n+1 is the next moment. 

 

The network learning algorithm will be discussed on the 

basis of the fuzzy-NN network shown in Fig. 4. In contrast to 

one-way neural networks, fuzzy-NN networks do not have a 

homogeneous structure. This entails the need to derive a 

learning algorithm for each layer separately. The learning 

algorithm should start from the output layer, i.e., from  the 

modification of the weights wf
k (6). 

 

�
���
�� !

= −�� − �∗� ��∗

�"#
$"#

$� �
 (6) 

 

where  

wk
f  is the k-th weight of the connections between layers (D) 

and (E) (Fig. 4) and 

xE is the input of layer (E).  

To unify the presented equations, it was assumed for layer 

(E) that 

"# ≜ �∗, leading to Equations (7) and (8). 

 
��∗

�"# = 1 
(7) 

 

 

"# = & � !�!' ⤇ d"#

d� !!
= �!'  (8) 

 

Equation (6) is simplified to the following form (9). 
�
���

�� !
= −�� − �∗�1�!' = −)�!'  (9) 
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where  

yk
D is the k-th unit output of layer (D) and  

δ = (t-y*) is the reverse layer difference for layer (D).  

 

On the basis of Equations (4), (5) and (9), the algorithm for 

modifying a single weight wf
k can be written as in (10) and 

(11). 

∆� !��� = � )�!' (10) 

 

 

� !�� + 1� = ∆� !��� + ∆� !��� (11) 

 

where 

ηf is the coefficient of learning for weight wf
k  of layer (E) of 

the network. 

After calculating the reverse difference of layer (D), 

calculations for layer (C) (12) can be performed.  

 

)+, = & )!,+' . ��,!, �′�"+,�
�0+!

 (12) 

 

 

where 

δC
j is the j-th reverse layer difference for layer (D) and δC

kj is 

the reverse difference of the k-th unit of layer (D), which is 

connected with the j-th unit of layer (C). Hence, for δC
j, Πi≠jyC

ik 

is the product of the output signals of the layer units (C), up 

to the k-th layer unit (D), excluding the case I = j, f’() is the 

derivative of the internal function of the layer units (C) and 

xC
j is the input of the j-th unit of layer (C).  

 

The Gaussian functions G(x) are used for fuzzification of 

crisp inputs. Thus, the membership functions of the xj  input 

have the form shown in Equation (13).  

 

1�"� = 2"3 − ��4!�"+ + �5!���                (13) 

 

For the Gaussian function, the aforementioned 

derivative takes the form shown in Equation (14). 

 

�67"+,8 = 2"+,��"+,�                                (14) 

 

The algorithm for modifying the weights wg is given in 

Equation (15). 

 

�4
+�� + 1� = �4

+��� + �4)+,9�4
+���9�+: (15) 

 

where  

ηg is the learning factor of weight wg and 

yB
j is the output of the j-th unit of layer (C).  

 

The reverse differences of layer units (B) δB
j, are 

calculated in the following manner (16). 

 

)+: = �4
+)+,  (16) 

 

The modification of the weights wc is described in 

Equation (17). 

 

 
�5
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where 

ηC is the learning factor for weight wc. 

 

IV. MODELS FOR POWER UNIT 

FUZZY-NN MODELS FOR FAULT DETECTION  

The model structure in the form of a fuzzy neural 

network is organized into the following two steps: the 

amount, type and location of fuzzy sets for each entry is 

determined and then a set of rules is defined to form a 

combination of all sets of fuzzy in-puts [7-11]. 

In order to carry out diagnostics on measurement 

systems based on the input data presented in Table 1, the 

combinations for the development of partial models were 

selected. Partial models are needed to develop a detection 

procedure for faults in measurement circuits, and they are 

used to obtain residuals. On the basis of the analysis of 

residuals, a fault detection procedure is performed as 

[18,19].  

The models are presented with dependencies as shown 

in Equations (18) to (23) (the designations are presented in 

Table 1). 

3̂� = ��<� (18) 

<= = ���, 3�� (19) 

>? = ��@, 3�� (20) 

�A = ��<, �BC�� (21) 

�A = ��@, 3D, 3�� (22) 

@A = ��3�� (23) 

 

The purpose of further analysis is to find models with the 

simplest possible structures that satisfy the assumed 

requirements. The aim of using simple structures results 

from the need to minimize learning times and the time 

required for model output calculations. The presented 

relationships should also take into account the dynamics of 

changes in the modelled values. 

For functional reasons, combinations of (19) to (23) were 

selected for modelling, bypassing Equation (18) because this 

should present a linear relationship in a properly functioning 

system and it is used for the diagnostics of the actuator. De-

pendency (23) has been extended to (24) and (25), due to 

the division of the steam stream into two pipelines supplying 

steam to the turbine. 

 

@AE = ��3� , @F� (24) 

@AF = ��3� , @E� (25) 

 

The process of training the models presented with the 

above relationships, was carried out using the reverse error 

propagation algorithm. For learning models, a training set 

was used based on data collected from the real object 

(turbine on a 120-MW block). The learning factor for the 

weights was η = 0.001. For each of the modelled 

combinations, tests with different initial values were carried 

out. The weights that were subject to modification aimed to 
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reach the same value regardless of the starting point. Model 

verifications were carried out on the basis of a set of data 

with no training set. 

 

In the following part of the article, selected charts 

showing the effects of modelling for the developed 

networks according to the relationship (20 are presented. 

During the tests, the influence of selected elements on the 

quality of the obtained models was examined. Different data 

sets were taken into consideration. 

To model the combination according to the relationship 

(20) for the input variables, five partitions were allocated, 

i.e., five membership functions for each input. The Gaussian 

bell function was used as a membership function, according 

to the dependence described in Equation (13). 

 

Fig. 5. Structure of the fuzzy-NN model for Equation (22) 

 

The structure shown in Fig. 5. is a development of the 

model presented in Fig. 6. On the basis of research and 

analysis, it was found that satisfactory modelling results 

were obtained with only the five membership functions. 

Since each input is divided into five fuzzy sets for two inputs, 

5 x 5 = 25 rules should be specified. The next stage in the 

construction of the fuzzy-NN model is to find the 

membership functions. The positions and initial shapes of 

these functions should be determined. The structure of 

model (20) consists, among other things, in finding 

appropriate membership functions for the input quantities 

of the model, i.e., Y – control of valves and pT – steam 

pressure.  

For the dependency (13) describing the Gaussian bell 

function, the coefficients wg  and wc should be selected. The 

parameter wg determines the shape of the function and wc 

concerns the location in the space describing the entrance. 

The input Y has been divided into five fuzzy sets and the 

range of changes of the signal is <0,100>%. The values of the 

coefficients are as follows: wc = 0.0, 25.0, 50.0, 75.0 and 100, 

and the slope wg = 0.075. The input pT has become divisible 

in the same way to cover the entire range of changes in the 

steam pressure signal, which is in the range <11,14> MPa. 

The values of the coefficients are as folows: wc = 11, 11.75, 

12.5, 13.25 and 14.0, and the slope of the function wg = 0.2. 

To collect the appropriate data sets needed for the 

models’ learning, tests were carried out on the object. The 

set power for the power unit was subject to changes in the 

whole range of the regulatory band. Changes of other 

quantities, such as steam pressure, valve position and steam 

flow, followed the power changes. The data were recorded 

to a file with a frequency of 1s. In the graph in Fig. 6, an 

example printout from one file containing training data, is 

presented. 

Fig.6. Training data for the model from Equation (20) 

 

The effect of modelling for the data included in the 

training set (Fig. 6) is shown in Figure 7. The actual value of 

the steam stream (m [t/h]) and the output value from the 

model (m ̂ [t/h]) are shown on one graph. The lower part of 

the graph shows the residues for the model r = m-m ̂ and the 

mean value in the sliding time window from the average 

residue r. 

The learning process was completed after about 600 

presentations of the training set. For the character-error 

criterion (26): 

 

G = 1
H & |�� − �J?|

��
K  100% 

N

�O�
 (26) 

where 

N is the number of samples in the training set, 

y^
i is the value calculated from the model and 

yi is the measured value from the object. 

 

Fig. 7. Verification data for the model, from Equation (23) 

 

Based on Fig. 7, the effects of modelling for the selected 

combination can be analysed. Two parameters were chosen 

as the criteria for the quality of modelling: the J-coefficient 

from Equation (26) and rmax – the maximum absolute value 

of the residue for a given test. The values of these 

coefficients were as follows: for the graph from Fig. 7, J = 

0.55% and rmax = 3 t/h. These values were considered 
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sufficient for industrial purposes for the tested object. 

To confirm the results, the model was verified using 

another set of data with the same parameters but without 

using the learning process. The set of verification data is 

presented in Fig. 8. This example set is one of many. 

 
Fig. 8. Verification data for the model from Equation (20) 

 

The range of changes in the steam stream is from 170 

t/h to 195 t/h, while the steam pressure changed from 12.2 

MPa to 12.7 MPa. These ranges correspond to the rated 

operating conditions of the control object during system 

control. The second important condition is that the range of 

changes was within the range of training data from Fig. 9. 

 

Fig. 9. The modelling effect for data not covered by the training set 

 

The modelling effect is presented in Fig. 9 as before (for 

Fig. 7.) The mass stream of real and modelled steam and the 

residual as the difference of these quantities, are shown. The 

values of these coefficients were as follows: J = 1.28 % and 

rmax = 10 t/h. A deterioration in the indicators is shown in the 

last fragment of the drawing, where one can observe 

relatively large differences between the model and the 

actual value. After the analysis, it turned out that the reason 

was the incorrect operation of the turbine control valves. In 

Fig. 8. we can observe the maximum control of the signal Y. 

Already, at the stage of designing the diagnostic system, 

the models showed their suitability for detecting 

malfunctions in the control system. 

FAULT ISOLATION 

Fault isolation procedures for power, steam pressure, 

pressure in the condenser and steam mass flow rate sensor 

faults are based on models (19), (20) and (22). Residuals (27), 

(28) and (29) are generated. 

 

 

 

P� = < − <= (27) 

P� = > − >?  (28) 

PQ = � − �A (29) 

 

On the basis of a binary diagnostic matrix (Table 2) 

developed by an expert, a set of rules necessary to locate 

faults in an example solution can be developed. 

 
Table 2. Binary diagnostic matrix 

 P pS pT m 

r1 1 0 1 0 

r2 0 0 1 1 

r3 1 1 1 0 

 

Fault isolation procedures for sensor faults are based on 

a set of six rules: 

 

a) If r1 = 0 and r2 = 0 and r3 = 0 then fault-free 

b) If r1 = 1 and r2 = 0 and r3 = 1 then fault P 

c) If r1 = 0 and r2 = 1 and r3 = 0 then fault m  

d) If r1 = 1 and r2 = 1 and r3 = 1 then fault pT 

e) If r1 = 0 and r2 = 0 and r3 = 1 then fault pS 

f) Otherwise, unknown state  

V. CONCLUSIONS 

The presented diagnostic system ensures rapid location 

of the fault before it adversely affects the course of the 

adjustment process. Currently, the majority of turbine 

controllers using microprocessor controllers use costly 

equipment redundancy in the measurement sensors. The 

introduction of information based methods of measuring 

path redundancy increases the reliability of these systems. 

Simulations and object tests have shown that the measuring 

methods presented in this paper for the detection and 

isolation of faults in the measurement paths are well-suited 

to their functions. The functionality of the entire control 

system is improved and the costs of implementing the 

turbine control system are reduced. 

Based on the experience gathered in the project and the 

literature studies carried out, some comments on fuzzy-NN 

models used for diagnostic purposes may be made. 

• These modelling methods are extremely useful for fault 

detection in non-linear industrial facilities, among other 

systems. 

• Proper preparation of training data largely determines the 

later correct operation of the fuzzy model. 

• It is necessary to provide training data covering the entire 

work area of the object. 

• The right choice of the structure of the model is very 

important; knowledge about the object and knowledge 

related to the applied modelling techniques must both be 

used. 

• The number of fuzzy model rules increases sharply with an 

increase in the number of inputs and the number of fuzzy 

sets for individual inputs. This limits their application to 

simple objects.  



 

36 

  



JAEEE Volume I, Issue I/ 2019 

37 

 

DIAGNOSTYKA USZKODZEŃ TORÓW POMIAROWYCH W 

UKŁADZIE STEROWANIA TURBINY PAROWEJ 

Przedstawiono system diagnostyki dla układu sterowania turbiny 

parowej. Opisano procesy regulacji w systemie elektroenergetycznym 

oraz strukturę układu regulacji turbiny kondensacyjnej w układzie bloku 

energetycznego. Mierzone wielkości zostały scharakteryzowane wraz z 

metodami wykrywania uszkodzeń dla poszczególnych wielkości. W 

pracy przedstawiono zastosowanie rozmytych sieci neuronowych do 

detekcji uszkodzeń torów pomiarowych Przedstawiono strukturę 

modelu rozmytego i metodę uczenia modelu na podstawie danych 

pomiarowych.  Zaprezentowano przykład zastosowania modelu FNN i 

zweryfikowano jego działanie na podstawie rzeczywistych danych 

pomiarowych  

Słowa kluczowe: diagnostyka, turbina, system sterowania, sieci 

neuronowe. 
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