ARIMA-based forecasting of the dynamics of confirmed Covid-19 cases for selected European countries

Keywords: Covid-19 epidemic, ARIMA model, forecasting, infection control, non-pharmaceutical intervention


Research background: On 11 March 2020, the Covid-19 epidemic was identified by the World Health Organization (WHO) as a global pandemic. The rapid increase in the scale of the epidemic has led to the introduction of non-pharmaceutical countermeasures. Forecast of the Covid-19 prevalence is an essential element in the actions undertaken by authorities.

Purpose of the article: The article aims to assess the usefulness of the Auto-regressive Integrated Moving Average (ARIMA) model for predicting the dynamics of Covid-19 incidence at different stages of the epidemic, from the first phase of growth, to the maximum daily incidence, until the phase of the epidemic's extinction.

Methods: ARIMA(p,d,q) models are used to predict the dynamics of virus distribution in many diseases. Model estimates, forecasts, and the accuracy of forecasts are presented in this paper.

Findings & Value added: Using the ARIMA(1,2,0) model for forecasting the dynamics of Covid-19 cases in each stage of the epidemic is a way of evaluating the implemented non-pharmaceutical countermeasures on the dynamics of the epidemic.


Download data is not yet available.


Ahmar, A. S., & del Val, E. B. (2020). SutteARIMA: short-term forecasting method, a case: Covid-19 and stock market in Spain. Science of The Total Environment, 138883. doi: 10.1016/j.scitotenv.2020. 138883.

Ainslie, K. E., Walters, C. E., Fu, H., Bhatia, S., Wang, H., Xi, X., Baguelin, M., Bhatt, S., Boonyasiri, A., Boyd, O., Cattarino, L., Ciavarella, C., Cucunuba, Z., Cuomo-Dannenburg, G., Dighe, A., Dorigatti, I., van Elsland, S. L., FitzJohn, R., Gaythorpe, K., Ghani, A. C., Green, W., Hamlet, A., Hinsley, W., Imai, N., Jorgensen, D., Knock, E., Laydon, D., Nedjati-Gilani, G., Okell, L. C., Siveroni, I., Thompson, H. A., Unwin, H. J. T., Verity, R., Vollmer, M., Walker, P. G. T., Wang, Y., Watson, O. J., Whittaker, C., Winskill, P., Donnelly, C. A. (2020). Evidence of initial success for China exiting COVID-19 social distancing policy after achieving containment. Welcome Open Research, 5(81). doi: 10.12688/wellcome openres.15843.1.

Alamo, T., Reina, D. G., Mammarella, M., & Abella, A. (2020). Open data resources for fighting covid-19. arXiv preprint arXiv:2004.06111.

Azad, S., & Poonia, N. (2020). Short-term forecasts of COVID-19 spread across Indian states until 1 May 2020. Preprints 2020, 2020040491. doi: 10.20944/preprints202004.0491.v1.

Baiocchi, G., & Distaso, W. (2003). GRETL: econometric software for the GNU generation. Journal of Applied Econometrics, 18(1).

Bandt, C. (2020). Transparent covid-19 prediction. arXiv preprint arXiv:2004.04732.

Benvenuto, D., Giovanetti, M., Vassallo, L., Angeletti, S., & Ciccozzi, M. (2020). Application of the ARIMA model on the COVID-2019 epidemic dataset. Data in brief, 105340. doi: 10.1016/j.dib.2020.105340.

Bertschinger, N. (2020). Visual explanation of country specific differences in Covid-19 dynamics. arXiv preprint arXiv:2004.0733c4.

Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley & Sons.

Calvetti, D., Hoover, A., Rose, J., & Somersalo, E. (2020). Bayesian dynamical estimation of the parameters of an SE (A) IR COVID-19 spread model. arXiv preprint arXiv:2005.04365.

Casella, F. (2020). Can the COVID-19 epidemic be managed on the basis of daily data? arXiv preprint arXiv:2003.06967.

Centeno, R. S., & Marquez, J. P. (2020). How much did the tourism industry lost? Estimating earning loss of tourism in the Philippines. arXiv preprint arXiv:2004.09952.

Ceylan, Z. (2020). Estimation of COVID-19 prevalence in Italy, Spain, and France. Science of The Total Environment, 138817. doi: 10.1016/j.scitotenv.2020. 138817.

Chakraborty, T., & Ghosh, I. (2020). Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: a data-driven analysis. Chaos, Solitons & Fractals, 135. doi: 10.1016/j.chaos.2020.109850.

Chimmula, V. K. R., & Zhang, L. (2020). Time series forecasting of COVID-19 transmission in Canada using LSTM networks. Chaos, Solitons & Fractals, 135. doi: 10.1016/j.chaos.2020.109864.

Chintalapudi, N., Battineni, G., & Amenta, F. (2020). COVID-19 disease outbreak forecasting of registered and recovered cases after sixty-day lockdown in Italy: a data driven model approach. Journal of Microbiology, Immunology and Infection, 53(3). doi:10.1016/j.jmii.2020.04.004.

Cottrell, A., & Lucchetti, R., Gretl user’s guide, gnu regression, econometric time-series library, Retrieved from http:/ricardo.ecn.wfu. edu/pub/gretl/manual/PDF/gretl-guide-a4.pdf.

de Wolff, T., Pflüger, D., Rehme, M., Heuer, J., & Bittner, M. I. (2020). Evaluation of pool-based testing approaches to enable population-wide screening for COVID-19. arXiv preprint arXiv:2004.11851.

Dehesh, T., Mardani-Fard, H. A., & Dehesh, P. (2020). Forecasting of covid-19 confirmed cases in different countries with ARIMA models. medRxiv. preprint doi: 10.1101/2020.03.13.20035345.

Dickey, D. A., & Fuller, W. A. (1981). Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica: Journal of the Econometric Society, 49(4).

Ding, G., Li, X., Shen, Y., & Fan, J. (2020). Brief Analysis of the ARIMA model on the COVID-19 in Italy. medRxiv preprint doi: 10.1101/2020.04.08. 20058636.

Fanelli, D., & Piazza, F. (2020). Analysis and forecast of COVID-19 spreading in China, Italy and France. Chaos, Solitons & Fractals, 134. doi: 10.1016/j.chaos. 2020.109761.

Fattah, J., Ezzine, L., Aman, Z., El Moussami, H., & Lachhab, A. (2018). Forecasting of demand using ARIMA model. International Journal of Engineering Business Management, 10. doi: 10.1177/1847979018808673.

Flaxman, S., Mishra, S., Gandy, A., Unwin, H. J. T., Coupland, H., Mellan, T. A., Zhu, H., Berah, T., Eaton, J. W., Guzman, P. N. P., Schmit, N., Callizo, L., Imperial College COVID-19 Response Team, Whittaker, C., Winskill, P., Xi, X., Ghani, A., Donnelly, C. A., Riley, S., Okell, L. C., Vollmer, M. A. C., Ferguson, N. M., & Bhatt, S. (2020). Estimating the number of infections and the impact of non-pharmaceutical interventions on COVID-19 in European countries: technical description update. arXiv preprint arXiv:2004.11342.

Flaxman, S., Mishra, S., Gandy, A., Unwin, H., Coupland, H., Mellan, T., Zhu, H., Berah, T., Eaton, J., Perez Guzman, P., Schmit, N., Cilloni, L., Ainslie, K., Baguelin, M., Blake, I., Boonyasiri, A., Boyd, O., Cattarino, L., Ciavarella, C., Cooper, L., Cucunuba Perez, Z., Cuomo-Dannenburg, G., Dighe, A., Djaafara, A., Dorigatti, I., Van Elsland, S., Fitzjohn, R., Fu, H., Gaythorpe, K., Geidelberg, L., Grassly, N., Green, W., Hallett, T., Hamlet, A., Hinsley, W., Jeffrey, B., Jorgensen, D., Knock, E., Laydon, D., Nedjati Gilani, G., Nouvellet, P., Parag, K., Siveroni, I., Thompson, H., Verity, R., Volz, E., Walters, C., Wang, H., Wang, Y., Watson, O., Winskill, P., Xi, X., Whittaker, C., Walker, P., Ghani, A., Donnelly, C., Riley, S., Okell, L., Vollmer, M., Ferguson, N., & Bhatt, S. (2020a). Report 13: estimating the number of infections and the impact of non-pharmaceutical interventions on COVID-19 in 11 European countries. Imperial College London. doi: 10.25561/77731.

Fong, S. J., Li, G., Dey, N., Crespo, R. G., & Herrera-Viedma, E. (2020). Composite Monte Carlo decision making under high uncertainty of novel coronavirus epidemic using hybridized deep learning and fuzzy rule induction. Applied Soft Computing, 106282. doi:.10.1016/j.asoc.2020.106282.

Grassly, N. C., Pons-Salort, M., Parker, E. P. K., White, P. J., Ainslie, K., Baguelin, M., Bhatia, S., Bhatt, S., Blake, I., Boonyasiri, A., Boyd, O., Brazeau, N., Cattarino, L., Charles, G., Ciavarella, C., Cooper, L.V., Coupland, H., Cucunuba, Z., Cuomo-Dannenburg, G., Dighe, A., Djaafara, V., Donnelly, C., Dorigatti, I., Eaton, J., van Elsland, S. L., Ferreira, F., Nascimento, D., FitzJohn, R., Flaxman, S., Fraser, K., Fu, H., Gaythorpe, K., Geidelberg, L., Ghani, A., Green, W., Hallett, T., Hamlet, A., Hauck, K., Haw, D., Hayes, S., Hinsley, W., Imai, N., Jeffrey, B., Jorgensen, D., Knock, E., Laydon, D., Lees, J., Mangal, T., Mellan, T., Mishra, S., Mousa, A., Nedjati-Gilani, G., Nouvellet, P., Okell, L., Olivera, D., Ower, A., Parag, K. V., Pickles, M., Ragonnet-Cronin, M., Riley, S., Siveroni, I., Stopard, I., Thompson, H. A., Unwin, H. J. Y., Verity, R., Vollmer, M., Volz, E., Walker, P., Walters, C., Wang, H., Wang, Y., Watson, O. J., Whittaker, C., Whittles, L., Winskill, P., Xi, X., & Ferguson, N. (2020). Report 16: role of testing in COVID-19 control. Imperial College London. doi: 10.25561/78439.

Guzzetta, G., Riccardo, F., Marziano, V., Poletti, P., Trentini, F., Bella, A., Andrianou, X., Del Manso, M., Fabiani, M., Bellino, S., Boros, S., Urdiales, A.M., Vescio, M. F., Piccioli, A., COVID-19 working group, Brusaferro, S., Rezza, G., Pezzotti, P., Ajelli, M., & Merler, S. (2020). The impact of a nation-wide lockdown on COVID-19 transmissibility in Italy. arXiv preprint arXiv:2004.12338.

Hotz, T., Glock, M., Heyder, S., Semper, S., Böhle, A., & Krämer, A. (2020). Monitoring the spread of COVID-19 by estimating reproduction numbers over time. arXiv preprint arXiv:2004.08557.

Iacus, S. M., Natale, F., Santamaria, C., Spyratos, S., & Vespe, M. (2020). Estimating and projecting air passenger traffic during the COVID-19 coronavirus outbreak and its socio-economic impact. Safety Science, 104791. doi: 10.1016/j. ssci.2020.104791.

Johns Hopkins University Center for Systems Science and Engineering, Coronavirus (COVID-19) Cases. Retrieved form COVID-19 (30.05.2020).

Karina, A. C., Fernando, A. M., Morteza, N. N., & Michael, H. (2020). Forecasting the effect of COVID-19 on the S&P500. arXiv preprint arXiv:2005.03969.

Kevrekidis, P. G., Cuevas-Maraver, J., Drossinos, Y., Rapti, Z., & Kevrekidis, G. A. (2020). Spatial modeling of COVID-19: Greece and Andalusia as case examples. arXiv preprint arXiv:2005.04527.

Kobayashi, G., Sugasawa, S., Tamae, H., & Ozu, T. (2020). Predicting infection of COVID-19 in Japan: state space modeling approach. arXiv preprint arXiv:2004.13483, 2020.

Kucharski, A. J., Russell, T. W., Diamond, C., Liu, Y., Edmunds, J., Funk, S., & Eggo, R. M., (2020). Early dynamics of transmission and control of COVID-19: a mathematical modelling study. Lancet Infectious Diseases, 20(5). doi: 10.1016/S1473-3099(20)30144-4.

Kumar, P., Kalita, H., Patairiya, S., Sharma, Y. D., Nanda, C., Rani, M., Rahmani, J., & Bhagavathula, A. S. (2020). Forecasting the dynamics of COVID-19 pandemic in top 15 countries in April 2020: ARIMA model with machine learning approach. medRxiv: 2020.03.30.20046227; doi: 10.1101/2020. 03.30.20046227.

Kumar, S., Sharma, S., & Kumari, N. (2020). Future of COVID-19 in Italy: a mathematical perspective. arXiv preprint arXiv:2004.08588.

Kuniya, T. (2020). Prediction of the epidemic peak of coronavirus disease in Japan, 2020. Journal of Clinical Medicine, 9(3). doi: 10.3390/ jcm9030789.

Lesniewski, A. (2020). Epidemic control via stochastic optimal control. arXiv preprint arXiv:2004.06680.

Li, Y, Wang, B, Peng, R, Zhou, C, Zhan, Y, Liu., Z, Jiang., X., & B., Zhao (2020. Mathematical modeling and epidemic prediction of COVID-19 and its significance to epidemic prevention and control measures. Annals Infectious Disease Epidemiology, 5(1).

Magri, L., & Doan, N. A. K. (2020). First-principles machine learning modelling of COVID-19. arXiv preprint arXiv:2004.09478.

Marsland III, R., & Mehta, P. (2020). Data-driven modeling reveals a universal dynamic underlying the COVID-19 pandemic under social distancing. medRxiv 2020.04.21.20073890; doi: 10.1101/ /2020.04.21.20073890.

Mena, R. H., Velasco-Hernandez, J. X., Mantilla-Beniers, N. B., Carranco-Sapiéns, G. A., Benet, L., Boyer, D., & Castillo, I. P. (2020). Using the posterior predictive distribution to analyse epidemic models: COVID-19 in Mexico City. arXiv preprint arXiv:2005.02294.

Mora, J. C., Pérez, S., Rodriguez, I., Nunez, A., & Dvorzhak, A. (2020). A semiempirical dynamical model to forecast the propagation of epidemics: the case of the Sars-Cov-2 in Spain. arXiv preprint arXiv:2004.08990.

Narajewski, M., & Ziel, F. (2020). Changes in electricity demand pattern in Europe due to COVID-19 shutdowns. arXiv preprint arXiv:2004.14864.

Novel Coronavirus (COVID-19) cases, provided by John Hopkins University CSSE. Retrieved form

Pai, C., Bhaskar, A., & Rawoot, V. (2020). Investigating the dynamics of COVID-19 pandemic in India under lockdown. arXiv preprint arXiv:2004.13337, 2020.

Patwardhan, C. (2020). SARS-COV-2 pandemic: understanding the impact of lockdown in the most affected states of India. arXiv preprint arXiv:2004.13632.

Perone, G. (2020). An ARIMA model to forecast the spread and the final size of COVID-2019 epidemic in Italy. HEDG - Health Econometrics and Data Group Working Paper Series, University of York. doi: 10.2139/ssrn.3564865.

Pugliese, A., & Sottile, S. (2020). Inferring the COVID-19 infection curve in Italy. arXiv preprint arXiv:2004.09404.

Radiom, M., & Berret, J. F. (2020). Common trends in the epidemic of Covid-19 disease. arXiv preprint arXiv:2004.12124.

Ribeiro, M. H. D. M., da Silva, R. G., Mariani, V. C., & dos Santos Coelho, L. (2020). Short-term forecasting COVID-19 cumulative confirmed cases: perspectives for Brazil. Chaos, Solitons & Fractals, 109853. doi: 10.1016/ j.chaos.2020.109853.

Rogers, L. C. G. (2020). Ending the COVID-19 epidemic in the United Kingdom. arXiv preprint arXiv:2004.12462.

Singh, S., Parmar, K. S., Kumar, J., & Makkhan, S. J. S. (2020). Development of new hybrid model of discrete wavelet decomposition and autoregressive integrated moving average (ARIMA) models in application to one month forecast the casualties cases of COVID-19. Chaos, Solitons & Fractals, 109866. doi: 10.1016/j.chaos.2020.109866.

Sonnino, G. (2020). Dynamics of the COVID-19--comparison between the theoretical predictions and real data. arXiv preprint arXiv:2003.13540.

Tandon, H., Ranjan, P., Chakraborty, T., & Suhag, V. (2020). Coronavirus (COVID-19): ARIMA based time-series analysis to forecast near future. arXiv preprint arXiv:2004.07859.

Tarassow, A. (2020). ARIMA-based forecasting of confirmed COVID/ Corona cases for various country-province combinations. Retrieved from (30.05.2020).

Tuli, S., Tuli, S., Tuli, R., & Gill, S. S. (2020). Predicting the growth and trend of COVID-19 pandemic using machine learning and cloud computing. Internet of Things, 100222. doi: 10.1016/j.iot.2020.100222.

Vattay, G. (2020). Forecasting the outcome and estimating the epidemic model parameters from the fatality time series in COVID-19 outbreaks. arXiv preprint arXiv:2004.08973.

Wang, L., Wang, G., Gao, L., Li, X., Yu, S., Kim, M., Wang, Y., & Gu, Z. (2020). Spatiotemporal dynamics, nowcasting and forecasting of COVID-19 in the United States. arXiv preprint arXiv:2004.14103.

World Health Organization, Coronavirus disease (COVID-19) outbreak. Retrieved form


Wu, J. T., Leung, K., & Leung, G. M. (2020). Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. Lancet, 395(10225). doi: 10.1016/S0140-6736(20)30260-9.

Xu, C., Yu, Y., Yang, Q., & Lu, Z. (2020). Forecast analysis of the epidemics trend of COVID-19 in the United States by a generalized fractional-order SEIR model. arXiv preprint arXiv:2004.12541.

Yan, B., Tang, X., Liu, B., Wang, J., Zhou, Y., Zheng, G., Zou, Q., Lu, Y., & Tu, W. (2020). An improved method of COVID-19 case fitting and prediction based on LSTM. arXiv preprint arXiv:2005.03446.

Yang, C., Sha, D., Liu, Q., Li, Y., Lan, H., Guan, W. W., Hu, T., Li, Z., Zhang, Z., Thompson, J.H., Wang, Z., Wong, D., Ruan, S., Yu, M., Richardson, D., Zhang, L., Hou, R., Zhou, Y., Zhong, C., Tian, Y., Beaini, F., Carte, K., Flynn, C., Liu, W., Pfoser, D., Bao, S., Li, M., Zhang, H., Liu, C., Jiang, J., Du, S., Zhao, L., Lu, M., Li, L., & Zhou,H. (2020). Taking the pulse of COVID-19: a spatiotemporal perspective. arXiv preprint arXiv:2005.04224.

Yonar, H, Yonar, A, Tekindal, M. A, & Tekindal. M. (2020). Modeling and forecasting for the number of cases of the COVID-19 pandemic with the curve estimation models, the Box-Jenkins and exponential smoothing methods. Eurasian Journal of Medicine and Oncology, 4(2). doi: 10.14744/ejmo.2020.28273.

Yudistira, N. (2020). COVID-19 growth prediction using multivariate long short term memory. arXiv preprint arXiv:2005.04809.

Zhang, Y., Yang, H., Cui, H., & Chen, Q. (2019). Comparison of the ability of ARIMA, WNN and SVM models for drought forecasting in the Sanjiang Plain, China. Natural Resources Research. doi:10.1007/s11053-019-09512-6.

How to Cite
Kufel, T. (2020). ARIMA-based forecasting of the dynamics of confirmed Covid-19 cases for selected European countries. Equilibrium. Quarterly Journal of Economics and Economic Policy, 15(2), 181-204.