Tracking financial cycles in ten transitional economies 2005–2018 using singular spectrum analysis (SSA) techniques

Keywords: financial cycles, spectral analysis, countries in transition, turning point, duration


Research background: Financial cycles are behind many deep financial crises and it closely connects them with the business cycles, showing long memory properties and effects. Being closely connected with the business cycles, we must first explore the true nature of the financial cycles to understand the nature of the business cycles. Financial cycles are real, they have long memory properties and long-lasting effects on the economy.

Purpose of the article: This study investigates the use of (SSA) in tracking and monitoring financial cycles focusing on ten (10) transitional economies 2005–2018.

Methods: Singular spectrum analysis isolate significant oscillatory patterns (cycles) on housing markets with an average 4-years length. We isolate credit cycles just for Bulgaria, implying long memory properties of the cycles since this study investigated medium term (2–5 years) oscillations.

Findings & Value added: The results prove the importance and advantages of using (SSA) in the study of financial cycles attempting to reveal the true nature of financial cycles as the principal component behind business cycles. Financial cycles show longer oscillations in the credit and property price series, which can explain 37.7%–49.9% of the variance of the total financial cycle fluctuations. Study results are of practical importance, particularly to policy-makers and practitioners in former transitional economies being vulnerable to adverse shocks on the financial markets. The results should assist policy-makers and financial practitioners in building and maintaining a sound financial policy needed to avoid future financial “bubbles”.


Download data is not yet available.


Allen, M. R., & Smith, L. A. (1996). Monte Carlo SSA: detecting irregular oscillations in the presence of colored noise. Journal of Climate, 9(12), 3373-3404. doi: 10.1175/1520-0442(1996)009<3373:MCSDIO>2.0.CO;2.

Antonakakis, N., Breitenlechner, M., & Scharler, J. (2015). Business cycle and financial cycle spillovers in the G7 countries. Quarterly Review of Economics and Finance, 58. doi: 10.1016/j.qref.2015.03.002.

Bank for International Settlements. Retrieved from totcredit.htm (10.11.2018).

Bank of Latvia. Retrieved from (10.11.2018).

Bank of Lithuania. Retrieved from (10.11.2018).

Bernanke, B. S., Gertler, M., & Gilchrist, S. (1999). The financial accelerator in a quantitative business cycle framework. In Handbook of macroeconomics. Volume 1C. Handbooks in economics. Vol. 15. Amsterdam: Elsevier.

Bongini, P., Iwanicz-Drozdowska, M., Smaga, P., & Witkowski, B. (2017). Financial development and economic growth: the role of foreign-owned banks in CESEE countries. Sustainability, 9(3). doi: 10.3390/su9030335.

Borio, C. (2014). The financial cycle and macroeconomics: what have we learnt?, Journal of Banking & Finance, 45. doi: 10.1016/j.jbankfin.2013.07.031.

Borio, C. (2017). Secular stagnation or financial cycle drag? Business Economics, 52(2). doi: 10.1057/s11369-017-0035-3.

Borio, C., Disyatat, P., & Juselius, M. (2017). Rethinking potential output: embedding information about the financial cycle. Oxford Economics Papers, 69(3). doi: 10.1093/oep/gpw063.

Borio, C., & Drehmann, M. (2011). Financial instability and macroeconomics: bridging the gulf. In World scientific atudies in international economics. The international financial crisis. World Scientific. doi: 10.1142/9789814322 096_0017.

Borio, C., Lombardi, M., & Zampolli, F. (2019). Fiscal sustainability and the financial cycle. In L. Ódor (Ed.). Rethinking fiscal policy after the crisis. editor). Cmbridge Univiersity Press doi: 10.1017/9781316675861.013.

Bulgarian national bank. Retrieved from (10.11.2018).

Burns, A. F., & Mitchell, W. C. (1946). Measuring business cycles. National Bureau of Economic Research.

Chang, Y. (2016). Financial soundness indicator, financial cycle, credit cycle and business. International Journal of Economics and Finance, 8(4). doi: 10.5539/ijef.v8n4p166.

Chorafas, D. N. (2015). Financial cycles. Palgrave Macmillan.

Christiano, L. J., & Fitzgerald, T. J. (2003). The band-pass filter. International Economic Review, 44(2). doi: 10.1111/1468-2354.t01-1-00076.

Croatian National Bank. Retrieved form (10.11.2018).

Diebold, F. X., & Yilmaz, K. (2009). Measuring financial asset return and volatility spillovers, with application to global equity markets. Economic Journal, 119(534). doi: 10.1111/j.1468-0297.2008.02208.x.

Diebold, F. X., & Yilmaz, K. (2012). Better to give than to receive: predictive directional measurement of volatility spillovers. International Journal of Forecasting, 28(1). doi: 10.1016/j.ijforecast.2011.02.006.

Don, H., & Adrian, P. (2002). Dissecting the cycle: a methodological investigation. Journal of Monetary Economics, 49(2). doi: 10.1016/S0304-3932(01)00108-8.

Drehman, M., Borio, C., & Tsatsaronis, K. (2012). Characterising the financial cycle: don’t lose sight of the medium term! BIS Working Papers, 380.

Drehmann, M., Borio, C., & Tsatsaronis, K. (2013). Can we identify the financial cycle? In D. D. Evanoff, C. Holthausen, G. G. Kaufman & M. Kremer (Eds.). The role of central banks in financial stability how has it changed? Studies in world scientific studies in international economics: Volume 30. World Scientific. doi: 10.1142/9789814449922_0007.

Estonian National Bank. Retrieved from (10.11.2019).

Eurostat housing price statistics . Retrieved from eu/nui/ (10.11.2019).

Federal Reserve Bank of St. Louis. Retrieved from (10.11.2019).

Felício A.J., Rodrigues, R., Grove, H., & Greiner, A. (2018) The influence of corporate governance on bank risk during a financial crisis, Economic Research-Ekonomska Istraživanja, 31(1). doi: 10.1080/1331677X.2018.1436 457.

Ghil, M., Allen, M. R., Dettinger, M. D., Ide, K., Kondrashov, D., Mann, M. E., & Yiou, P. (2001). Advanced spectral methods for climatic time series. Reviews of Geophysics, 40(1). doi: 10.1029/2000RG000092.

Globan, T. (2018). Financial supply cycles in post-transition Europe – introducing a composite index for financial supply. Post-communist Economies, 30(4). doi: 10.1080/14631377.2018.1442053.

Groth, A., & Ghil, M. (2015). Monte Carlo singular spectrum analysis (SSA) revisited: detecting oscillator clusters in multivariate datasets. Journal of Climate, 28(19). doi: 10.1175/jcli-d-15-0100.1.

Harding, D., & Pagan, A. (2016). The econometric analysis of recurrent events in macroeconomics and finance. Princeton University Press.

Hodrick, R. J., & Prescott, E. C. (1997). Postwar U.S. business cycles: an empirical investigation. Journal of Money, Credit and Banking, 29(1). doi: 10.2307/2953682.

Iacobucci A. (2005). Spectral analysis for economic time series. In J. Leskow, L. F. Punzo & M. P. Anyul (Eds). New tools of economic dynamics. Lecture notes in economics and mathematical systems, vol 551. Springer, Berlin, Heidelberg .

Jenkins, G. M., & Watts, D. G. (1968). Spectral analysis and its applications. San Francisco: Holden-Day.

Kunovac, D., Mandler, M., & Scharnagl, M. (2018). Financial cycles in Euro area economies: a Cross-Country Perspective. Discussion Papers, Deutsche Bundesbank, 04/2018.

Lee, C. C., Chen, M. P., & Ning, S. L. (2017). Why did some firms perform better in the global financial crisis? Economic Research-Ekonomska Istraživanja, 30(1). doi: 10.1080/1331677X.2017.1355258.

Mañé, R. (1981). On the dimension of the compact invariant sets of certain non-linear maps. In Lecture notes in mathematics. Berlin: Springer Verlag. doi: 10.1007/BFb0091916.

Miranda-Agrippino, S., & Rey, H. (2018). U.S. monetary policy and the global financial cycle. NBER Working Paper, 21722. doi: 10.3386/w21722.

Nina, G., Vladimir, N., & Anatoly, Z. (2001). Analysis of time series structure: SSA and related techniques. Beopsc Ta: Chapman & Hall/CRC.

Nolan, C., & Thoenissen, C. (2009). Financial shocks and the US business cycle. Journal of Monetary Economics, 56(4). doi: 10.1016/j.jmoneco.2009.03.007.

OECD (2019). House prices and related indicators. Retrieved from (10.11.2018).

Sella, L., Vivaldo, G., Ghil, M., & Groth, A. (2010). Economic cycles and their synchronization: spectral analysis of macroeconomic series from Italy, The Netherlands, and the UK. Euroindicators working papers Slovakia National Bank. Retrieved from (10.11. 2018).

Škare, M., Sinković, D., & Porada-Rochoń, M. (2019a). Financial development and economic growth in Poland 1990-2018. Technological and Economic Development of Economy, 25(2). doi: 10.3846/tede.2019.7925.

Škare, M., Sinković, D., & Porada-Rochoń, M. (2019b). Measuring credit structure impact on economic growth in Croatia using (VECM) 1990–2018. Journal of Business Economics and Management. 20(2). doi: 10.3846/jbem.2019.8344.

Takens, F. (1981). Detecting strange attractors in turbulence. In Lecture notes in mathematics. Berlin Springer Verlag. doi: 10.1007/BFb0091924.

Vautard, R., & Ghil, M. (1989). Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D: Nonlinear Phenomena, 35(3). doi: 10.1016/0167-2789(89)90077-8.

Vautard, R., Yiou, P., & Ghil, M. (1992). Singular-spectrum analysis: a toolkit for short, noisy chaotic signals. Physica D: Nonlinear Phenomena, 58(1-4). doi: 10.1016/0167-2789(92)90103-t.

Yülek, M. A. (2017). Why governments may opt for financial repression policies: selective credits and endogenous growth. Economic Research-Ekonomska Istraživanja, 30(1). doi: 10.1080/1331677X.2017.1355252.

How to Cite
Skare, M., & Porada-Rochoń, M. (2019). Tracking financial cycles in ten transitional economies 2005–2018 using singular spectrum analysis (SSA) techniques. Equilibrium. Quarterly Journal of Economics and Economic Policy, 14(1), 7-29.