railway efficiency. metadoiological aspects

abstract

Improving market competitiveness and economic efficiency was the objective behind the demonopolisation and liberalisation of the railway sector in the European Union. Achieving this objective remains important and crucial to the development of a single rail transport market. The transport performance and financial results of the sector under the new, separative organisational structure of railways in the EU is the result of the action of many different actors, private operators and public entities. This significantly complicates the development of uniform and clear comparable performance evaluation indicators for the sector and makes comparative analyses difficult. Moreover, the specific situation of railways in the EU as a tool for implementing environmental and social policy may conflict with the requirements of financial efficiency. The article presents determinants and methods of measuring railway efficiency proposed by researchers and practitioners.

JEL: L380 – Public Policy; L920 – Railroads and Other Surface Transportation

Key words: railway, restructuring, efficiency, determinants

Paper type: Theoretical research article
1. INTRODUCTION

The process of restructuring the railways in the European Union began in the early 1990s. The main decisions to change the organisational structure of the sector involved separating the companies managing railway infrastructure from those carrying out transport activities. Access to business activities in the sector was also opened up to private companies, while maintaining requirements in terms of professional competence and safety, which means that operators must obtain a licence.

The measures taken were intended both to improve the economic situation of undertakings in the rail transport sector and to improve the market position and attractiveness of railways as a means of transport. Improving economic efficiency is a topical and important issue, both for railway undertakings and for states, owners and managers of assets, mainly the rail infrastructure network. Striving for the best possible results from their activities is obvious in the case of managers and owners of railway undertakings. Their survival in a competitive market environment depends on attracting customers and generating profits. For the European Union, however, the railways are not only an important and large economic resource, but also a tool for achieving social and environmental policy objectives. Poor use of the existing potential has negative economic consequences, including above all the burden on public finances of the need for constant maintenance of the expensive and inefficient rail infrastructure network and other assets.

In the light of climate change, it is increasingly important for the economies of the European Union to meet growing transport needs in an environmentally friendly and energy-efficient manner, in accordance with the idea of the European Green Deal. Rail transport offers such opportunities. The European Union’s transport system, outlined in the 2011 White Paper on European Transport Policy, is to be an efficient, effective and environmentally friendly system (EC, 2011). Rail transport is to be an essential component of this system, offering high quality services at affordable prices. It is therefore fundamental for the efficiency and development of rail transport to achieve lower production costs and a better service offering that meets customer expectations. This objective has guided the restructuring, demonopolisation and liberalisation of the railway market in the European Union. Intra-industry competition and new private operators were expected to provide a sufficient pro-efficiency stimulus. However, the effects of structural changes have not been fully satisfactory so far, which means that it is necessary to continue to search for factors that could increase the efficiency of the entire sector and railways’ market shares.
Research carried out by practitioners and scientists confirms the theses of transport economics that the key to improving rail efficiency is a significant increase in demand for freight and passenger transport or the restriction of service to profitable lines, market segments and types of service. The public tasks of railways and the social and environmental policy objectives of EU countries, which railways are supposed to serve, are at odds with the requirements of financial efficiency. In view of the expanded role of railways in the European Union, it would also be appropriate to apply extended efficiency criteria, supplemented by the expected non-financial effects of railways, and covering all the entities making up the fragmented structure of the sector.

Due to the variety of objectives and forms of economic activity carried out in the railway sector and the regulatory involvement of the state, the assessment of railway sector efficiency is complex and must take into account various factors: technical, production, political and marketing. The aim of this article is to present methods for measuring railway efficiency.

2. RAILWAY RESTRUCTURING AND EFFICIENCY

Increasing the railways' share in transport required a fundamental change in the structure of the sector, which made it necessary for scientists and politicians to design fundamental restructuring processes. The guiding idea behind the restructuring of the railways was and is the creation of conditions for railway undertakings to achieve sustainable economic efficiency, ensuring them a stable position on the transport market.

According to the theoretical foundations, the way to achieve the objectives set for the restructuring of rail transport is to transform the monopolistic structure of this sector into a structure allowing the market mechanism and competition to operate. At the same time, it is necessary to identify and regulate those processes in rail transport which create chronic deficits and inefficiencies in operations. This required the identification of several areas of restructuring activities, including (Mężyk, 2011, 77-84):
- the new approach and regulation of natural monopolies in rail transport,
- the principles of a competitive market,
- the external conditions necessary to achieve sustainable efficiency in railway undertakings,
- adaptation of the hitherto integrated railway undertakings (which are state-owned) to the new rules for operating under competitive conditions on the transport market.
The classical economic approach to the operation of railways assumes that the marginal cost of producing services decreases as the scale of production and the scope of the processes performed increases. The desire to fully realise potential economies of scale was thus the original rationale during the development phase of rail transport for consolidating rail processes under private or public control. Another rationale, relevant to public authorities in the context of regulatory activity, was the intention to control actual or potential abuse of market power as a result of the existence of a natural monopoly and the distribution of economic benefits among consumers. A change in the hitherto principles of organisation of railway transport was therefore associated with the need to confront the assumption that railway transport as a whole constitutes a natural monopoly. Closer analysis of this assumption led to the recognition that, in fact, only the management of railway infrastructure, including train operations, exhibits features of a natural monopoly, while the remaining area, i.e. freight and passenger transport processes, may be separated as independent activities subject to market laws.

Separation of transport companies from the complex structure of the only one company in the country made it possible to open access to operations to other interested entrepreneurs and, consequently, to create a rail transport market with all the advantages and positive effects of the market mechanism and competition. This necessitated the design of appropriate market and regulatory solutions. As far as the regulation of railway infrastructure was concerned, such solutions were sought which, without diminishing the advantages of natural monopoly (the lowest possible service production costs), would at the same time provide effective control over the negative aspects of its operation - primarily its social ineffectiveness (limiting production volumes, increasing prices). With regard to the organisation of the transport market, solutions were needed that would ensure a model similar to that of perfect competition - non-discriminatory access to the market and to production factors (equal access to exercise the profession, to production factors - the railway network, rolling stock, skilled workforce) and equal conditions for competing on the market. An important factor which objectively determines the effectiveness of rail transport is the distance over which it is carried out. This is another area which, under European conditions, requires legal changes at inter-state level. The extension of transport distances, especially for freight, became politically possible with the implementation of the single European market at the beginning of the 1990s, while technical harmonisation of railway systems remains a problem.
The creation of a competitive rail market has also involved the transformation of state-owned enterprises, subordinated to public service requirements and thus to socio-political decisions, into enterprises operating on a commercial basis. As a result, the smooth operation of the rail transport sector depends on a number of factors as follows:
- technical - on the quality and accessibility of rail infrastructure,
- legal - regarding regulation of access to the market and to the profession,
- market - with respect to rules of operation and principles of market access, strength and forms of intra-industry competition, attractiveness of services to customers,
- political - in terms of functioning of an open transport market and access to services and principals in other EU countries.

European legislation clearly defines the role of public authorities as the owner of the railway network, the market regulator and the entity responsible for financial stability of the sector.

3. OPERATORS ON THE RAILWAY MARKET IN POLAND
The process of demonopolisation and liberalisation of the railway market in Poland, initiated by the provisions of the Act on Commercialisation and Restructuring of the State Enterprise "Polish Railways" of 8 September 2000, has led to a significant increase in the number of operators active in the sector. The total number of licensed operators is 122, with some of them being infrastructure owners and also performing the functions of infrastructure managers. Some operators have licences to operate both freight and passenger services. Table 1 shows the list of passenger rail operators, according to their share in the number of passengers carried and transport work performed in 2019.
Among the 12 major carriers, only one, Arriva RP, is a private carrier. Two companies, PKP Intercity S.A. and PKP SKM, are public companies owned by the 100% state-owned PKP S.A. group. These two companies carried more than 36% of passengers in 2019 and performed 57% of transport work, measured in terms of passenger-kilometres. A special form of ownership is represented by the passenger carrier Polregio, which is owned by the Industrial Development Agency J.S.A.(majority shareholding, 50% plus one share) and by the local governments of all provinces. As of 1 December 2021, Polregio was granted the status of a joint stock company. Other passenger transport companies included in the table are entities owned by voivodeship self-governments.

This market structure, with the dominance of public companies, entitles this part of the railway sector to be treated as the public sector. However, the operating conditions of each company are different and highly varied, which significantly hinders comparability of their transport performance. The main factors which have a significant impact on the performance of a railway undertaking in passenger transport are the density of the railway infrastructure network, the degree of industrialisation and urbanisation of a region, the number of people living in a given province. Location of big cities and agglomerations creates favourable conditions for their service by railway transport due to mass and regularity of transport needs.

The mass of transport needs is the main determinant of the effectiveness of rail transport, both in passenger and freight transport. The second significant factor is the transport distance. The greater the distance, the lower
the fixed costs of rail and rolling stock per unit of distance. Significantly more private carriers are active on the rail freight market (Table 2).

Tab. 2. Cargo railway undertakings in Poland in 2020 and their market share

<table>
<thead>
<tr>
<th>No.</th>
<th>Operator</th>
<th>By mass transported</th>
<th>By haulage [tkm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PKP Cargo S.A.</td>
<td>36.63%</td>
<td>40.56%</td>
</tr>
<tr>
<td>2</td>
<td>DB Cargo Polska S.A.</td>
<td>16.89%</td>
<td>5.09%</td>
</tr>
<tr>
<td>3</td>
<td>Lotos Kolej sp. z o.o.</td>
<td>5.62%</td>
<td>10.36%</td>
</tr>
<tr>
<td>4</td>
<td>PUK Kolprem sp. z o.o.</td>
<td>3.81%</td>
<td>2.52%</td>
</tr>
<tr>
<td>5</td>
<td>PKP LHS sp. z o.o.</td>
<td>3.68%</td>
<td>4.94%</td>
</tr>
<tr>
<td>6</td>
<td>CTL Logistics sp. z o.o.</td>
<td>3.55%</td>
<td>4.31%</td>
</tr>
<tr>
<td>7</td>
<td>Orlen Kol-Trans S.A.</td>
<td>2.92%</td>
<td>4.21%</td>
</tr>
<tr>
<td>8</td>
<td>Freightliner PL sp. z o.o.</td>
<td>2.46%</td>
<td>3.30%</td>
</tr>
<tr>
<td>9</td>
<td>Pol-Miedź Trans sp. z o.o.</td>
<td>1.83%</td>
<td>1.44%</td>
</tr>
<tr>
<td>10</td>
<td>Rail Polska sp. z o.o.</td>
<td>1.55%</td>
<td>1.47%</td>
</tr>
<tr>
<td>11</td>
<td>PKP Cargo Service sp. z o.o.</td>
<td>1.26%</td>
<td>b.d.</td>
</tr>
<tr>
<td>12</td>
<td>CD Cargo Poland sp. z o.o.</td>
<td>1.29%</td>
<td>1.76%</td>
</tr>
<tr>
<td>13</td>
<td>PCC Intermodal S.A.</td>
<td>1.23%</td>
<td>1.77%</td>
</tr>
<tr>
<td>14</td>
<td>Capttrain Polska sp. z o.o.</td>
<td>1.15%</td>
<td>1.72%</td>
</tr>
<tr>
<td>15</td>
<td>Ciech Cargo sp. z o.o.</td>
<td>1.13%</td>
<td>0.94%</td>
</tr>
<tr>
<td>16</td>
<td>Inter Cargo sp. z o.o.</td>
<td>1.05%</td>
<td>2.32%</td>
</tr>
<tr>
<td>17</td>
<td>KP Kotlarnia S.A.</td>
<td>0.94%</td>
<td>b.d.</td>
</tr>
<tr>
<td>18</td>
<td>Ecco Rail sp. z o.o.</td>
<td>0.91%</td>
<td>1.39%</td>
</tr>
<tr>
<td>19</td>
<td>LTE Polska sp. z o.o.</td>
<td>0.85%</td>
<td>1.03%</td>
</tr>
<tr>
<td>20</td>
<td>JSW Logistics sp. z o. o.</td>
<td>0.80%</td>
<td>0.50%</td>
</tr>
<tr>
<td>21</td>
<td>Railpolonia sp. z o.o.</td>
<td>0.60%</td>
<td>0.60%</td>
</tr>
<tr>
<td>22</td>
<td>Metrans Polonia sp. z o.o.</td>
<td>0.58%</td>
<td>0.70%</td>
</tr>
<tr>
<td>23</td>
<td>Eurotrans sp. z o.o.</td>
<td>0.58%</td>
<td>b.d.</td>
</tr>
<tr>
<td>24</td>
<td>Karpiel sp. z o.o.</td>
<td>0.61%</td>
<td>0.76%</td>
</tr>
<tr>
<td>25</td>
<td>Orion Rail Logistics sp. z o.o.</td>
<td>0.502%</td>
<td>b.d.</td>
</tr>
<tr>
<td>26</td>
<td>Eurasian Railway Carrier sp. z o.o.</td>
<td>0.49%</td>
<td>b.d.</td>
</tr>
<tr>
<td>27</td>
<td>Bartex Plus sp. z o.o.</td>
<td>0.27%</td>
<td>0.44%</td>
</tr>
<tr>
<td>28</td>
<td>Logistics & Transport Company sp. z o.o.</td>
<td>0.28%</td>
<td>0.48%</td>
</tr>
<tr>
<td>29</td>
<td>STK S.A.</td>
<td>0.10%</td>
<td>0.10%</td>
</tr>
<tr>
<td>30</td>
<td>Pozostali</td>
<td>6.47%</td>
<td>5.26%</td>
</tr>
</tbody>
</table>

Source: UTK, Statystyka przewozów towarowych, 2020

Among the nearly 30 carriers that count on the market, only two entities belong to the PKP S.A. group. However, in 2020 they carried more than 40% of the freight mass and performed 46% of the haulage (tonne-kilometres). Two more entities, Lotos Kolej and Orlen Kol-Trans, belong to public companies, Lotos Group and PKN Orlen Group.
4. CONCEPT AND ASPECTS OF RAIL TRANSPORT EFFICIENCY

Efficiency is one of the basic terms in economics. It means the result of actions taken (or planned), described by the relation between the effects obtained and the outlays incurred. In its most general formulation, effectiveness refers to many economic phenomena, including management and organisation. A narrower concept is economic efficiency, which is measured using synthetic indicators of resource productivity.

In order to define the concept of rail transport effectiveness and to establish indicators for measuring it, it is necessary to define both the types and volumes of expenditure incurred and the expected results. In the European Union, this is problematic because the infrastructure management function has been assigned to a separate body that cannot provide transport services alone. In the countries of the European Union, the railway infrastructure network within national borders, including supply and safety systems, is in public ownership, with only a few sections of individual lines or sidings remaining in private ownership.

The principle of the separating structure of the European rail market is, that operators gain access to the railway network against payment. Under European law, it is the duty of the States, the owners of the infrastructure, to ensure that the infrastructure managers' expenditure on maintaining and modernising the railway network is balanced against their revenue. However, income from the sale of routes does not cover the full costs of maintaining and modernising the network, for which reason infrastructure managers also receive subsidies from the state. Full coverage of the costs of the rail network from the sale of route access is also not required by law or policy; on the contrary, it is recommended that the costs of the rail route should be competitive with the costs of the motorway and include, for example, only marginal social costs.

The financing of new projects is a separate issue and is based on public funds. The amount of expenditure incurred is related to the extent of maintenance work, network maintenance standards and the train path parameters offered. The result of these activities is the offer of train paths with a specified speed and capacity. However, the actual sale of train paths and therefore the financial effects of the infrastructure manager's activity depend on demand from the operators. The activities of the infrastructure manager, expenditure incurred in developing the railway network and maintaining network quality standards have a direct and significant impact on the extent and quality of services provided by carriers but may not be reflected in the level of income of the manager. As a result of the regulations introduced providing access to the railway network, many private railway undertakings have appeared on the European market, accounting for a significant proportion of traffic. The expansion of private
operators has primarily affected the freight market. However, the largest freight operators in Europe are still state-owned companies. In passenger transport, on the other hand, public, state and local authority operators dominate in most European countries. All companies operate according to the same principles, fully autonomously, on the basis of licences.

Railway undertakings' expenditure on railway operations consists mainly of wage costs, the cost of access to infrastructure and expenditure on running rolling stock. As a result of these expenditures, freight and passenger transport is carried out, generating revenues and profits. However, the volume of transport does not depend only on carriers. The attractiveness of an offer to a customer is influenced, for example, by the time of transport, which in turn depends on the condition of available infrastructure and permissible train speed. On the other hand, the number of passengers in passenger transport carried out as a public good service is related to the spatial and temporal range and frequency of the transport offer, which is significantly influenced by the size of public subsidies. Subsidies for passenger transport activities covered in Poland from public funds of the government and provincial self-governments may be earmarked for subsidizing the costs of transport implementation or for the purchase of new vehicles. Thus, there are three distinct groups of stakeholders bearing the costs of operating the railway and expecting satisfactory results. These are:
- public authorities (government and provincial governments),
- infrastructure manager
- carriers.

The expectations of these three groups of entities with regard to economic performance are partially convergent, primarily with regard to the highest possible volume of freight and passengers transported at minimum cost. These expectations coincide with the formula of classical productive efficiency. However, other effects are also important for public authorities, which can include:
- providing all stakeholders, citizens and companies, with transport services of general interest, with adequate accessibility (spatial, temporal), affordability (price) and quality. This implies maintaining an adequate network size and quality of service, as well as sufficiently low fares, which may be incompatible with a purely business-oriented approach,
- development of the sector, through investments introducing innovation and technical progress,
- optimisation of use of the railway infrastructure through cooperation with other transport branches,
- environmental effects - reduction of environmental pollution from transport sources by taking over a part of transport performed by road transport, and as a result - increase of railway market share
- political effects - creation of common, single market in the international dimension, ensuring public ownership of key railway resources.

The above-mentioned expectations of public authorities with regard to the railways are in many cases in conflict with the requirements of purely productive efficiency. In the light of current European Union transport policy, however, economic objectives should be given priority. An increase in the efficiency of rail transport will consequently benefit everyone - owners of railway undertakings, users of services and taxpayers. It will also ensure conditions for the stable development of this branch of transport, which will also make it possible to achieve environmental and social objectives. This approach reflects both the point of view of the state, for which the public interest is important, and the priorities of railway undertakings.

The assessment of rail transport efficiency must therefore take account of the fact that the costs of rail transport production result not only from the quantity of resources consumed but also from the quality parameters achievable and expected by customers and from the need to meet the social, environmental and political objectives set for the railways by the State. There is a relationship between financial and efficiency objectives and those of a social nature. However, these objectives can be given different weights, e.g. financial and cost efficiency are usually rated higher than other outcomes. Each state, when undertaking the process of evaluating railway efficiency, should formulate its own set of criteria for this evaluation, in addition to criteria of productive efficiency.

Taking into account the objectives set for railways, it can be seen that one of the basic effects, which is fully agreed on and expected by all parties, is an increase in the share of railways in servicing the transport market (Mężyk, 2011). Thus, the quantitative development of freight and passenger transport is the most important measure, realistically reflecting the effects of the functioning of the sector and the convergence of the interests of the state, carriers and customers, individual and business entities.

An increase in the volume of transport does not, however, indicate an increase in the financial effectiveness of a carrier or the whole sector. An important aspect of the negative or positive evaluation of the changes in this measure in the context of the entity's efficiency is the analysis of the conditions of its implementation, including exogenous conditions, such as the condition of the economy, the change in the goods structure or transport behaviour patterns, the development of the logistics structure and cooperation with other transport branches, remaining outside the influence of the initiative of a single entity.
5. MODELS FOR MEASURING RAILWAY EFFICIENCY IN THE FIELD OF PRODUCTION THEORY AND PRODUCTION FUNCTIONS

Efficiency measurement models in the area of production theory and production functions aim to indicate whether and to what extent producers’ performance deviates from their expectations (Holvad, 2020). The application of methods such as efficiency measurement models to the railway sector poses some difficulties because it requires taking into account the specific characteristics of the railway market. The specifics of the railway market include:
- the existence of a natural monopoly on access to rail infrastructure,
- the existence of network externalities,
- economies of density, scale and scope associated with the provision of rail services.

Efficiency analysis can be considered as one of the techniques available to determine the ability of entities to transform inputs into outputs. These analyses can be carried out at different levels of aggregation, in individual departments within a company, for the whole company over time, in cross-sections of companies and whole sectors. The outcome of the production process depends on various factors, on the effort expended as well as on capabilities, including exogenous factors. In the case of railways, as in other modes of transport, the analysis of external factors and conditions is very important, since transport is a secondary need that occurs in response to the primary demand of the economy and society. If this demand is negligible, the transport system is idle.

Given the importance attributed to railways in balancing the transport system, the competitiveness of the railways is critical to achieving this objective. The competitiveness of railways is closely related to their attractiveness in meeting transport needs, which in turn influences their efficiency and effectiveness. A very important factor is the existence of equal conditions of competition between transport modes operating in a given market segment. Analysis of the railway sector’s efficiency may broaden knowledge of the factors causing its lack and indicate the directions of change, which would be important for railway operators and public authorities. Analysis of the determinants of productivity and efficiency of railway undertakings should give public authorities a better understanding of which regulatory and policy instruments are important to promote productivity in the railway sector. According to Holvad, there are three main approaches to analysing the ability to transform inputs into outputs (Holvad, 2020). These are:
- partial productivity indicators,
- averaged production functions,
- limit-based methods (parametric and non-parametric methods).

Productivity indicators are widely used in assessing the ability of entities to convert inputs into outputs. Productivity indices are basically concerned with the relationship of one output to one input factor. However, it is difficult to apply this evaluation method to multiple products or multiple inputs, where it becomes necessary to define weights to calculate the total products and inputs, or to distribute inputs across products. This is the situation of rail services.

Approaches to better capture the complexity of railway operations in Holvad’s view are econometric techniques such as Stochastic Frontier Analysis (SFA) and Data Envelopment Analysis (DEA) (Holvad, 2020). DEA method, i.e. Data Envelopment Analysis, is a semi-parametric method of analysing the results achieved by a selected economic entity or a group of such entities with a similar profile of activity, forming a sector of economy, for example the passenger or freight transport sector.

The DEA method makes it possible to identify those entities or sectors with the best performance characteristics (Dorosiewicz, 2015). DEA method uses the concept of relative efficiency, estimated by comparing the efficiency of the examined unit with the efficiency obtained in other available and taken into consideration units. A test unit is considered to be efficient if with the use of available production technologies it is not possible to improve the results obtained in that unit. In practice, it is necessary to construct a production function that describes the relationship between inputs and outputs.

In the transport sector, it is often difficult to obtain detailed, comparable data, including the specification of effects and, above all, of inputs, which makes it difficult to apply the mentioned techniques to efficiency analysis. However, given the opportunity to improve railway efficiency, for example through benchmarking, comparability of data is important.

6. J. SWIER GENERAL RAILWAYS COST-BENEFIT MODEL

One attempt to comprehensively capture the costs and effects of railway operations in the mixed public-private structure of European railways is the model proposed by J. Swier, a manager at Pro Rail, the rail infrastructure management entity of the Netherlands (Swier, 2012). Swier concludes that the organisational structure of railways in the EU is conducive to a number of positive developments, such as a greater number of operators, improved quality of service, competition for customers and a clear definition of the roles of public authorities and private operators. However, the downside is that no one knows how all the costs and revenues
in the rail sector are related, or who contributes and to what extent to the overall effect of rail operations, which ultimately benefits shippers and passengers.

The overall finances of railways as a mode of transport consist of a mix of revenues and subsidies, as well as operating costs, capital expenditures and access charges, obtained and borne by all the entities that make up the product of railways - transport services. Swier proposes two models, which organise these relationships in the railway sector and help to understand them:
- a quantitative cost/benefit model,
- a matrix of common quality targets for the whole railway sector as a complement.

The starting point for the construction of a quantitative model is the assumption that the degree of profitability of rail transport can be estimated by knowing all costs and all revenues. Swier estimated the costs and revenues associated with managing the railway network and transport activities for each line on the network it manages, assigning them to a unit of total transport work (the so-called "transport unit", Transport Unit, which is the sum of transport work in passenger and freight transport, used by the International Union of Railways UIC). The following groups of financial categories are included in the model:
- four types of costs: operating costs for passenger services, freight services, cost of access to infrastructure, infrastructure maintenance costs,
- two types of revenue: revenue from the sale of services and public subsidies.

All costs and revenues have been identified for each line in the network and related to one line kilometre, thus giving a picture of how much it costs to maintain one line kilometre and what revenue that line generates per kilometre. The analysis of the relationships obtained allowed the formulation of conclusions explaining the relationships between costs, revenues and utilization rates of each line and the entire Dutch railway network. As an example of evaluating the effectiveness in terms of network utilization, the following conclusions can be cited, as formulated by Swier:
- as the use of the network increases, the overall cost of rail transport also increases; but revenues are growing faster,
- costs of little-used regional lines are low, but revenues from them are even lower; in this situation it is necessary to increase revenue without increasing costs (by increasing the number of passengers),
for many lines, even with relatively high utilisation, competition 'for the market' is better than competition 'on the market'. Splitting the operation of this line as a result of competition between the two operators results in a rapid decline or even disappearance of profit, as revenues decline faster than operating costs.

The calculations carried out by J. Swier made it possible to determine the break-even point in terms of the number of TU transport units per 1 km of line, in two variants: in one case only for transport operations, and in the second variant for infrastructure management and transport performance together. Moreover, J. Swier has estimated external effects connected with railway operation (social costs and benefits), according to methodology recommended by the European Union for cost/benefit analysis of investment projects. According to these guidelines, social outcomes included (EU, 2014):
- travel time savings due to reduction of congestion on motor roads,
- reducing the number of accidents on car roads,
- (possibly) less air pollution due to less car traffic,
- (possibly) less interference with the landscape, through less construction of road infrastructure,
- (possible) lower production costs,
- (possible) economic incentives for employment and the economy.

Jan Swier has shown that the social benefits of railway operation exceed the costs of public subsidies, which in effect fully justifies the policy of supporting railways by the state. The calculations performed are for the Netherlands, but the proposed methodology can be applied to any country. The results of the calculations make it possible to gain knowledge about the total costs and revenues incurred by all groups of entities on individual lines, as well as about the factors that influence the preservation or loss of efficiency. Such knowledge is important, if only for the sake of making rational decisions on continuing or abandoning the operation of particular lines. However, much of the data could only be obtained through studies and surveys commissioned in advance by the infrastructure manager. On the other hand, other data, especially those concerning the operating costs of private carriers, were not available and were estimated indirectly.
7. METHODOLOGY FOR ASSESSING RAIL PERFORMANCE RECOMMENDED BY ITF

Research and discussion on rail efficiency research methodologies is regularly undertaken by the International Transport Forum, an intergovernmental organisation dealing with transport issues, administratively linked to the OECD but politically independent (63 members). Studies undertaken by ITF think-tanks on this issue have addressed the problem of how to measure rail performance or efficiency - both in the sense of comparing one railway with another (cross-sectional comparison) and in the context of assessing changes in railway performance as a result of policy interventions (time series). Many studies have highlighted the significant impact of the specificity of national railway systems on their effectiveness, which is very difficult to quantify and not easy to change, thus making it difficult to compare the performance of the systems in a reliable way. Among the elements that make up the national characteristics of rail systems are:

- the historical background to the physical layout of the railway network and its organisation,
- wars and the impact of their effects on railway infrastructure,
- topographical conditions - it is more costly to build and maintain infrastructure in mountainous areas,
- settlement structure and population density influencing the degree of network utilisation the specifics of national railway policy: varying degrees of acceptance of railway subsidies and debt, political decisions to make costly investments without assured financing for their continued operation, or political decisions to finance railways on the basis of their performance.

Among the characteristics that differentiate railway systems, we should also mention the technical characteristics of the network, such as the degree of electrification, the number of switches and crossings, railway hubs, stations, the degree of automation, the share of dedicated lines, etc. The questions posed by the ITF experts were: What is the appropriate level of detail at which an analysis should take place? What data must be available so that decision makers can compare railroad performance, assess the impact of past interventions, and estimate the benefits of future initiatives?

In the light of the ITF experts' opinion, technical efficiency, which involves maximizing the results obtained from a set of inputs, or allocative efficiency, understood as the creation of an optimal set of inputs to maximize results, is dominant (ITF, 2019). However, it is difficult to adopt a single efficiency formula that is equally relevant to business owners or rail operators,
government, users or the regulatory body. Operators will define efficiency in terms of infrastructure access and cost. Users are interested in availability, reliability or speed of carriage. For the regulator, it will be important to assess both technical and allocative efficiency, and different information will be needed to examine both parameters. Consequently, the ITF experts believe that the simplest approach to conceptualising and measuring rail performance is to derive Key Performance Indicators (KPIs) from published data. This may be sufficient to develop a simple but balanced scorecard. To monitor performance, both cross-sectional indicators (which compare systems) and time series indicators (which measure change over time) are needed.

However, both types of data acquired should be treated with some caution. Cross-sectional data carry the risk of comparing systems where outputs or inputs are defined differently. For time series indicators, there is a risk that the categorization of inputs or outputs may change from year to year. Past performance data must therefore be adjusted to reflect changes, e.g. in organizational structure or accounting standards. For cross-sectional comparative analysis, data from different systems must be standardized. Measuring the performance of a rail system using demand/supply indicators (such as the number of passengers carried per total number of train-kilometres) can also be misleading. These indicators are influenced by factors such as topography, historical evolution, etc. and they may be insignificant without adjustment for exogenous factors.

The performance indicators recommended by the ITF combine the parameters of the rail product, i.e. freight work expressed in tonne-kilometres and passenger-kilometres, with the main cost and revenue drivers of railway undertakings, which are:
- the degree of utilisation of the network,
- the degree of utilisation of rolling stock,
- productivity,
- cost/income ratios.

For the purpose of analysis of effectiveness of railway operations, the main categories of costs and revenues, occurring in the two basic processes which make up transport production, i.e. infrastructure management and transport performance, were identified. It has been assumed that the main infrastructure costs are investment, maintenance and renewal costs, while the costs of transport operations are rolling stock and labour costs. The revenues of the infrastructure manager consist of the revenues from infrastructure access charges and public subsidies, while the revenues of the operator consist of ticket sales and also public subsidies. Unfortunately, conducting financial efficiency analyses is often hampered by the lack of availability of complete financial data. The efficiency
of the railway system is mainly influenced by the intensity of use of the network and rolling stock, due to the large share of fixed costs. The network utilisation indicator is the number of TUs (sum of tonne-km and pkm) per one line kilometre (TU/km), while the rolling stock utilisation indicator is the number of TUs per 1 train kilometre. The higher the resource utilization, the higher the revenue generated.

In view of the complexity of the problem and the difficulty in accessing reliable data, experts from the International Transport Forum recommend using simple indicators to collectively analyse rail performance. A basic aggregate picture of railway efficiency can be obtained using a small set of cross-sectional and time series data, forming a limited set of key performance indicators. The data needed are generally routinely collected by rail organizations.

8. BALANCED SCORECARD

The simplest approach to developing a scorecard is to develop key performance indicators (KPIs) from published data. The indicators proposed by the ITF relate to the basic parameters of size and scale of operation, which form the basis for the development of basic efficiency and productivity indicators. This will enable the development of a basic balanced rail performance scorecard that would consist of six types of indicators (Bente, Thompson, 2014). These are:

1. System Scope,
2. Use of assets,
3. Use of human resources,
4. Operating Results,
5. Financial Results,

The advantage of a simple balanced scorecard is the availability of data. These are data relating to:

- **passengers**: number of passengers, passenger-km, gross tonne-km for passenger trains, number of train-km, passenger coaches, electric and diesel multiple units,
- **freight**: tonnes carried, tonne-kilometres, gross tonne-kilometres of freight carried, number of train kilometres for freight trains and freight wagons,
- **common or shared assets**: locomotives, manpower, kilometres of line,
- **financial and economic performance**: total operating costs; total operating revenue, passenger revenue, freight revenue.
The efficiency and productivity indicators developed from the above data are:
- average passenger journey length (pas. km/number of passengers) and average freight journey length (tonne-km/number of tonnes),
- share of passengers in traffic units (TU): lane-km / (lane-km+tonokm),
- share of passengers in gross tonne-km: quotient of the mass of passenger trains to the total mass of trains,
- share of passenger transport in total operational work (passenger train km/(passenger train km+freight train km),
- traffic density: TU/km of line, gross tonne-km/km of line and poc. km/km of line
- performance of passenger carriages: pas. km/(train weight: passenger carriages + DMU+EMU traction units),
- wagon capacity: tonne-km/wagon
- Locomotive Use: TU/(locomotive + MU factor),
- labour productivity: TU/number of employees, tkm gross/number of employees; number of train km / employees,
- operating ratio: operating costs/operating income. is a widely used measure of financial performance and an indicator of a railway's ability to meet its financial obligation
- average revenue per lane km and per tonne-km.

Both cross-sectional indicators (comparison of systems) and time series indicators (change over time) will be needed to monitor performance. Time series analysis allows the rail system's performance to be compared to previous years, but no matter how good the railroad's performance may seem in comparison to itself, it may still be relatively inefficient compared to other railroad companies. Using cross-sectional (time-series) data analysis, one could attempt to assess whether some railroad companies consistently rank at the top of the distribution in terms of efficiency in many of these areas and over time. Both types of data should be treated with caution. Time series indicators are subject to the risk that the categorization of inputs or outputs changes from year to year and can be strongly affected by major organizational or economic changes. A key weakness of using KPIs is that different measures produce different results (e.g. cost per train-km and cost per track-km) and it is not clear which measure should be used.

The proposed approach has the advantage of simplicity, but there are also caveats. The simplest approach to benchmarking is to compare the railway to its own past performance. However, even in this case, all data and parameters may not be the same. Past financial performance data may need to be adjusted as a result of organizational changes within the company, changes in accounting standards or policies, inappropriate
application of accounting standards, or external policy decisions where the owner is the state. There may also be periods when rail investment or infrastructure maintenance is not up to scratch, causing problems to accumulate in future.

Also, exogenous, cost-determining factors may be a much greater cause of variation in performance than railroad management. Of the three main stakeholders, the decision maker (regulatory authority, state) has the most power to determine external conditions. In passenger transport, the growth in traffic can be attributed predominantly to changes in the economy. The vertical division in the rail sector’s organisational structure increases transaction costs related to coordination, internal accounting and negotiation, although the exact magnitude of these costs is subject to debate.

How complicated data collection can be is shown by the example of Poland. The preparation of performance indicators for the railway sector in Poland will require the collection of transport and financial data from 122 licensed carriers providing passenger and freight services as well as from 17 infrastructure managers, public – state, self-government and private ones.

9. CONCLUSIONS

The efficiency of railway transport operations in the European Union is a topical and important issue, both from the point of view of the practice of railway companies and from the perspective of EU Member States. The basic issue for further development of rail transport is to reduce production costs and to prepare a better offer of services meeting customers’ expectations. This objective has guided the processes of demonopolisation and liberalisation of the railway market in the European Union from the outset. Intra-industry competition and new private carriers in the market were expected to provide sufficient pro-efficiency incentives. However, the effects of structural change are not yet fully satisfactory (Mężyka, 2011, p.406).

The provision of railway services is multi-dimensional and, in economic terms, a railway undertaking is a multi-product undertaking. It is a very capital-intensive activity where various economic phenomena such as economies of scale and density or manifestations of natural monopoly occur. This complexity makes it difficult to draw up an efficiency description that is equally relevant from different points of view or for all stakeholders: government, network users (operators), rail service users.

In most countries, large subsidies of public money are paid for rail infrastructure and passenger transport. An important question for the authorities in such a situation is whether these subsidies are spent efficiently or how they can be reduced, e. g. by increasing the efficiency
of the beneficiary. Rail operators are interested in production efficiency and users of rail services in their utility. Investigating each of these aspects requires obtaining different information. Studying rail efficiency is also difficult because of the complexity of the conditions under which rail services are provided.

Accurate identification of the determinants of railway sector efficiency, taking into account its complexity, requires a very large dataset, not always available and quantifiable. The availability of data is the main problem. As ITF experts note in the report quoted in the article, research into the effectiveness of railways in the EU has been hampered by a lack of good quality data. Thompson and Bente, on the other hand, state that most railway undertakings do not see the need for detailed information for internal management purposes or consider that it is not in their interest to disclose such information in order to make public comparisons (Bente, Thompson, 2014).

However, due to the public subsidisation of railways, public authorities have the right to require undertakings to report key data. This would allow for a study of railways efficiency, at least in basic terms, and a comparative analysis of results, which could be a path to beneficial change. In view of the role of railways in a sustainable transport system, the criteria for assessing the efficiency of the sector should be extended to environmental and social effects, which have a substantial and quantifiable value.

REFERENCES