Selection of settings of PID regulators for quadrocopter with the use of optimization methods in the Wolfram MATHEMATICA software

  • Krzysztof Wieczorkowski Kielce University of Technology
  • Leszek Cedro Kiecle University of Technology
Keywords: selection, quadrocopter, optimization methods, Mathematica software


The article presents the method of modeling the dynamics of a quadrocopter and presents a method for the selection of PID regulators. The quadrocopter's dynamics were derived based on the Lagrange equations of the second type. In the form of graphs, the simulation results were presented for the settings selected using the optimization method using the Wolfram Mathematica package


Audronis T., Building Multicopter Video Drones, Wydawnictwo Packt Publishing, Birmingham 2014 r.

Ben Ammar N., Bouallegue S., Haggege J., Modeling and sliding mode control of a quadrotor unmanned aerial vehicle, 3rd International Conference on Automation, Control, Engineering and Computer Science, (2016 r.) pp. 834-840

Bouabdallah, S., Noth A., Siegwart R., PID vs LQ control techniques applied to an indoor micro quadrotor, IEEE/RSJ International Conference on Intelligent Robots and Systems, (2014 r.) pp. 2451 – 2456.

Cheng L. L., Liu H. B., Examples of Quadrocopter control on ROS, IEEE 9th International Conference on Anti-counterfeiting, Security, and Identification (ASID), 2015r.

Florek M., Huba M., Duchon F., Sovcik J., Kajan M., Comparing approaches to quadrocopter control, 23rd International Conference on Robotics in Alpe-Adria-Danube Region, Słowacja 2014

Gardecki S., Giernacki W., Gośliński J., Kasiński A., An adequate mathematical model of four-rotor flying robot in the context of control simulations, [w:] Journal of Automation, Mobile Robotics & Intelligent Systems, vol. 8, no. 2 (2014 r.), pp. 9-16

Gliński H., Grzymkowski R., Kapusta A., Słota D., Mathematica 8, Wydawnictwo Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2012 r.

Herrera M., Chamorro W., Gómez A. P., Camacho O., Sliding mode control An approach to control a quadrotor, Conference: APCASE 2015, At Quito, Ecuador, (2015 r.)

Holonec R., Copindean R., Dragan F., Rapolti L., Self-quided AR Drone using LabVIEW, [w:] Acta Electrotehnica Vol. 57 No. 5, pp. 600-603, 2016 r.

Rabhi A., Chadli M., and Pegard C., Robust Fuzzy Control for Stabilization of a Quadrotor, 15th International Conference on Advanced Robotics (ICAR), (2011 r.) pp. 471 - 475

Seidler J., Badach A., Molisz W., Metody rozwiązywania zadań optymalizacji, Wydawnictwa Naukowo-Techniczne, Warszawa 1980

Vitecek A., Cedro L., Farana R., Modelowanie matematyczne: podstawy, Wydawnictwo Politechniki Świętokrzyskiej, Kielce 2010 r.