Resistance to the piercing of composite materials

  • Lesław Kyzioł Polish Naval Academy
Keywords: composites, strength of materials, puncture resistance, bullet, energy absorption, impact test, ballistic tests, pinewood


For structures that carry dynamic loads, the requirements are imposed for safety reasons. The requirements apply to both materials and construction. This requires searching for optimal calculation methods, including geometric and physical nonlinearity, which are results from the construction of the structure. An example is various ballistic structures (ballistic shields), which are hit by bullets in which huge energy is accumulated. In this case, the hitting in the shield with a bullet can be considered as a load due to mass impact. Loads at high strain rates are described by various mathematical models. The mathematical model is complex because a large number of "coefficients" is required, moreover, the obtained test results are not always repeatable. The paper presents the results of shooting multilayer plates with composite materials with 7.62 mm caliber bullets. The shield consisted of three layers, the outer layers were steel or aluminum, the inner layer was natural or modified wood. The samples had the shape of a shield and were 50 mm in diameter and of different thickness. The results of the research allowed to assess the impact of wood modification on its puncture resistance.


Almohandes A.A., Abdel-Kader M.S., Eleiche A.M.: Experimental investigation of the ballistic resistance of steel-fiberglass reinforced polyester laminated plates, Composites Part B Eng 27, 1996, pp. 447-458.

Dobrociński S. + inni Badania odporności udarowej dwuwarstwowych próbek ze stopu AlZn5Mg2CrZr, Zesz. Nauk. AMW (2), 2000, pp.138-146.

Follansbee P. S., Fundamentals of strength, Wiley, New Jersey, 2014.

Follansbee P. S., Huang J. C., and Gray G. T., Low-temperature and high-strain-rate deformation of nickel and nickel-carbon alloys and analysis of the constitutive behavior according to an internal state variable model, Acta Metallurgica et Materialia, Vol. 38, No.7, 1990, pp. 1241-1254.

Jamrozik K., Karliński J., Nieliniowa analiza numeryczna uderzenia balistycznego w zagadnieniach dynamiki konstrukcji, Zeszyty Naukowe WSOWLąd, Nr 1 (135) 2005, pp. 24-33.

Johnson G.R., Cook W.H., A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, Proceedings of the 7th International Symposium on Ballistics, The Hague, The Netherlands, April 1983, pp. 541-548.

Kyzioł L. Badania odporności balistycznej kompozytów z zastosowaniem drewna modyfikowanego, Zeszyty Nauk AMW, Nr 3, 2004, str. 6980.

Kyzioł L. Distribution of methylmethacrylate concentration in a porous material, Polish Academy of Sciences-Branch in Gdańsk. Marine Technology Transactions 10, 1999, pp. 175-190.

Kyzioł L. Examination results of methylmethacrylate concentration in modified woods, Polish Academy of Sciences-Branch in Gdańsk. Marine Technology Transactions. 11 2000, pp.181-193.

Kyzioł L. Reinforcing wood by surface modification, Composite Structures, 158, 2016, pp. 64–71.

Kyzioł L., Drewno modyfikowane na konstrukcje morskie, AMW, 2010, Gdynia.

Kyzioł L., Kowalski S.J. Mechanical properties of modified wood, IUTAM Symposium on Theoretical and Numerical Methods in Continuum Mechanics of Porous Materials. University of Stuttgart. Germany, September 5-10 1999, pp. 221-228.

Kyzioł L., Szwabowicz M., Toughness of Scots pine – polymethyl methacrylate composite, Polymer Composites, 2018 DOI: 10.1002/pc.24740.

PAM-SHOCK™: Solver Notes Reference Manual. Version 2000, PSI, The Software Company of ESI Group, 2000.

Perzyna P.: Teoria lepkoplastyczności. PWN, Warszawa 1966.

Pogodin-Aleksiejew D. Wytrzymałość dynamiczna i kruchość metali, WNT, 1969, Warszawa.

Wierzbicki T.: Obliczenia konstrukcji obciążonych dynamicznie. Arkady, Warszawa 1980.

Zukas J.A. et al. High Velocity Impact Dynamics, John Wiley&Sons Inc U.K., 1990.