Application of Trefftz method for the solution of two-dimensional Poisson’s problem taking into account material properties

  • Dorota Borkowska Rzeszow University of Technology
Keywords: Trefftz method, Poisson equation, boundary value problem, theoretical analysis, numerical analysis

Abstract

The aim of this paper is theoretical and numerical analysis of one of the nonsingular Trefftz method. Two-dimensional boundary value problem governed by Poisson’s equation is taken as the example. Domain boundary equation is obtained by transformation of classical formulation of the boundary problem with the use of weighted residual method. In this paper the original variation formulation is considered. The solution of the problem is assumed as the superposition of Trefftz functions, which satisfy Laplace’s equation. Taking the same functions as the weighting functions one obtains equations of the Galerkin version of the Trefftz method with symbolic name OS;TT. The paper contains the theoretical analysis of the OS;TT method which is confirmed with numerical example. .

References

Borkowska D., Analiza teoretyczna oraz numeryczna Wybranej hybrydowej nieosobliwej metody Trefftza na przykładzie dwuwymiarowego zagadnienia Poissona, Cz. 1, Autobusy. Technika, Eksploatacja, Systemy Transportowe, 12, 743-746, 2017.

Borkowska D., Analiza teoretyczna oraz numeryczna Wybranej hybrydowej nieosobliwej metody Trefftza na przykładzie dwuwymiarowego zagadnienia Poissona, Cz. 2, Autobusy. Technika, Eksploatacja, Systemy Transportowe, 12, 747-752, 2017.

Brański A., Borkowska D., Effectiveness of nonsingular solutions of the boundary problems based on Trefftz methods, Eng Anal Bound Elem, 59, 97–104, 2015.

Brański A., Borkowska D., Galerkin versions of nonsingular Trefftz methods derived from variational formulations for 2D Laplace problem, Acta Physica Polonica A, 128, 50-55, 2015.

Brański A., Metody numeryczne rozwiązywania zagadnień brzegowych. Klasyfikacja i przegląd, Oficyna wydawnicza Politechniki Rzeszowskiej, Rzeszów 2013.

Brebbia C.A., Dominguez J., Boundary Elements - An Introductory Course. Second Edition, WIT Press, Southampton, 1992.

Herrera I., Boundary methods: an algebraic theory, Boston, Pitman Publishing, 1984.

Herrera I., Trefftz method: a general theory, Numerical Methods for Partial Differential Equations, 16, 561 580, 2000.

Kupradze V. D., On the approximate solution of problems in mathematical physics, Russian Mathematical Surveys, 22, 58 108, 1967

Trefftz E., Ein Gegenstuck zum Ritzchen Verharen, Proc. 2nd Int. Cong. Appl. Mech., pp. 131137, 1926.

Zieliński A. P., On trial functions applied in the generalized Trefftz method, Advances in Engineering Software, 24, 1-3, 147 155, 1995.

Published
2018-06-30
Section
Articles