Ambiguous notation of Grünwald-Letnikov differintegral

  • Radosław Cioć Kazimierz Pulaski University of Technology and Humanities in Radom
Keywords: differintegrals, Grünwald-Letnikov

Abstract

The paper discussed the problem of Grünwald-Letnikov differintegral notation in which non-integer order can be incorrectly interpreted as a higher or lower order derivative. Taking the problem into consideration the author’s proposal is new notation of differintegrals.

Downloads

Download data is not yet available.

References

Apostol T. M.: Calculus Vol. 1, One-Variable Calculus with an Introduction to Linear Algebra. John Wiley & Sons, Inc. 1967.

Cioć R.: Dodatnia pochodna Grünwalda-Letnikova jako pochodna funkcji drogi. Autobusy. Technika, Eksploatacja, Systemy Transportowe, 12/2017.

Cioć R.: Grünwald-Letnikov derivative – analyse in space of first order derivative. Frontiers in Fractional Calculus, Book Series: Current Developments in Mathematical Sciences Vol. 1, eISBN: 978-1-68108-599-9, ISBN: 978-1-68108-600-2, ISSN: 2589-2711 (Print), ISSN: 2589-272X (Online), Bentham Science Pub-lishers Ltd 2018.

Das S.: Functional Fractional Calculus for System Identification and Controls. Springer-Verlag Berlin Heidelberg 2008.

Gómez-Aguilar J.F. et al.: A Physical Interpretation of Fractional Calculus in Observables Terms: Analysis of the Fractional Time Constant and the Transitory Response. Revista Mexicana de Física 60, 32-38, 2014.

Miller K., Bertram R.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley & Sons 1993.

Ostalczyk P.: Zarys rachunku różniczkowo-całkowego ułamkowych rzędów. Teoria i zastosowanie w praktyce. Wydawnictwo Politechniki Łódzkiej, Łódź 2008.

Podlubny I.: Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications. Aca-demic Press, San Diego 1999.

Rutman R.S.: On Physical Interpretation of Fractional Integration and Differentiation. Theoretical and Mathematical Physics, Vol. 105, No. 3, 1995.

Published
2019-02-28
Section
Articles